Menu Close

Question-164576




Question Number 164576 by mathlove last updated on 19/Jan/22
Answered by Rasheed.Sindhi last updated on 19/Jan/22
(√(2+(√3))) =a⇒(1/a)=(1/( (√(2+(√3)))))∙((√(2−(√3)))/( (√(2−(√3)))))  (1/a)=(√(2−(√3)))   ((√(2−(√3))))^x +((√(2+(√3))) )^x  =4  ⇒a^x +(1/a^x )=4⇒a^(2x) −4a^x +1=0  a^x =((4±(√(16−4)))/2)=2±(√3)  { ((2+(√3) =a^2 )),((2−(√3) =a^(−2) )) :}  a^x =a^(±2)    x=±2
$$\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\:={a}\Rightarrow\frac{\mathrm{1}}{{a}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}}\centerdot\frac{\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}}{\:\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}} \\ $$$$\frac{\mathrm{1}}{{a}}=\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\: \\ $$$$\left(\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\right)^{{x}} +\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\:\right)^{{x}} \:=\mathrm{4} \\ $$$$\Rightarrow{a}^{{x}} +\frac{\mathrm{1}}{{a}^{{x}} }=\mathrm{4}\Rightarrow{a}^{\mathrm{2}{x}} −\mathrm{4}{a}^{{x}} +\mathrm{1}=\mathrm{0} \\ $$$${a}^{{x}} =\frac{\mathrm{4}\pm\sqrt{\mathrm{16}−\mathrm{4}}}{\mathrm{2}}=\mathrm{2}\pm\sqrt{\mathrm{3}}\:\begin{cases}{\mathrm{2}+\sqrt{\mathrm{3}}\:={a}^{\mathrm{2}} }\\{\mathrm{2}−\sqrt{\mathrm{3}}\:={a}^{−\mathrm{2}} }\end{cases} \\ $$$${a}^{{x}} ={a}^{\pm\mathrm{2}} \: \\ $$$${x}=\pm\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *