Menu Close

Question-164672




Question Number 164672 by mathlove last updated on 20/Jan/22
Answered by Ar Brandon last updated on 20/Jan/22
Ω=∫_0 ^π ((cosx+1)/( (√(3+4cosx+cos^2 x))))dx=∫_0 ^π ((cosx+1)/( (√((cosx+1)(cosx+3)))))dx      =∫_0 ^π (√((cosx+1)/(cosx+3)))dx=(√2)∫_0 ^π ((cos((x/2)))/( (√(4−2sin^2 ((x/2))))))dx      =2∫_0 ^(π/2) ((cosx)/( (√(2−sin^2 x))))dx=2[arcsin(((sinx)/( (√2))))]_0 ^(π/2) =2((π/4))=(π/2)
Ω=0πcosx+13+4cosx+cos2xdx=0πcosx+1(cosx+1)(cosx+3)dx=0πcosx+1cosx+3dx=20πcos(x2)42sin2(x2)dx=20π2cosx2sin2xdx=2[arcsin(sinx2)]0π2=2(π4)=π2

Leave a Reply

Your email address will not be published. Required fields are marked *