Menu Close

Question-164728




Question Number 164728 by mr W last updated on 21/Jan/22
Commented by mr W last updated on 21/Jan/22
two points P and Q on the parabola  y=(x^2 /a) with ∣PQ∣=l. the normal lines  at P and Q intersect at point S.  find the locus of S.
twopointsPandQontheparabolay=x2awithPQ∣=l.thenormallinesatPandQintersectatpointS.findthelocusofS.
Answered by ajfour last updated on 21/Jan/22
S(−h,k)  Normal  from S  y=−((a/(2p)))x+c       P(p,(p^2 /a))  lies on it  (p^2 /a)=−(a/2)+c  (p_2 −p_1 )^2 +(((p_2 ^2 −p_1 ^2 )^2 )/a^3 )=L^2     ...(I)  k=((ah)/(2p))+(p^2 /a)+(a/2)  ⇒ 2p^3 +a(a−2k)p+ah=0  we get p_1 ,p_2 , p_3   in terms of    h, k,a .  substituting in ..(I) gives required  the three locii, for three choices of  pairs from among p_1 , p_2 , p_3 .
S(h,k)NormalfromSy=(a2p)x+cP(p,p2a)liesonitp2a=a2+c(p2p1)2+(p22p12)2a3=L2(I)k=ah2p+p2a+a22p3+a(a2k)p+ah=0wegetp1,p2,p3intermsofh,k,a.substitutingin..(I)givesrequiredthethreelocii,forthreechoicesofpairsfromamongp1,p2,p3.
Commented by mr W last updated on 21/Jan/22
thanks for trying sir! i′ll also give a  try.
thanksfortryingsir!illalsogiveatry.
Answered by mr W last updated on 21/Jan/22
Commented by mr W last updated on 23/Jan/22
locus in shape of a German Brezel...
locusinshapeofaGermanBrezel
Commented by mr W last updated on 22/Jan/22
Commented by mr W last updated on 21/Jan/22
say P(p, (p^2 /a)), Q(q, (q^2 /a))  tan φ=((2p)/a)  tan ϕ=((2q)/a)  (q−p)^2 +((q^2 /a)−(p^2 /a))^2 =l^2   (q−p)^2 [1+(((p+q)^2 )/a^2 )]=l^2   [(q+p)^2 −4pq][1+(((p+q)^2 )/a^2 )]=l^2   let u=p+q, v=pq  (u^2 −4v)(1+(u^2 /a^2 ))=l^2   ⇒v=(1/4)(u^2 −((a^2 l^2 )/(a^2 +u^2 )))    eqn. of PS:  y=(p^2 /a)−(a/(2p))(x−p)  y=(p^2 /a)+(a/2)−((ax)/(2p))  eqn. of QS:  y=(q^2 /a)+(a/2)−((ax)/(2q))  say intersection point S(x_s ,y_s )  (p^2 /a)+(a/2)−((ax_s )/(2p))=(q^2 /a)+(a/2)−((ax_s )/(2q))  (p^2 /a)−((ax_s )/(2p))=(q^2 /a)−((ax_s )/(2q))  x_s =−((2(q+p)pq)/a^2 )  ⇒x_s =−((2uv)/a^2 )  2y_s =((p^2 +q^2 )/a)+a−ax_s ((1/(2p))+(1/(2q)))  y_s =(a/2)+((p^2 +q^2 )/(2a))−((a(p+q)x_s )/(4pq))  y_s =(a/2)+(((p+q)^2 −pq)/a)  ⇒y_s =(a/2)+((u^2 −v)/a)  taking u as parameter we get the eqn.  of locus of point S:   { ((x=−((2uv)/a^2 ))),((y=(a/2)+((u^2 −v)/a))) :} with v=(1/4)(u^2 −((a^2 l^2 )/(a^2 +u^2 )))    with u given, p, q are roots of  z^2 −uz+(1/4)(u^2 −((a^2 l^2 )/(a^2 +u^2 )))=0  ⇒p,q=(1/2)(u∓((al)/( (√(a^2 +u^2 )))))
sayP(p,p2a),Q(q,q2a)tanϕ=2patanφ=2qa(qp)2+(q2ap2a)2=l2(qp)2[1+(p+q)2a2]=l2[(q+p)24pq][1+(p+q)2a2]=l2letu=p+q,v=pq(u24v)(1+u2a2)=l2v=14(u2a2l2a2+u2)eqn.ofPS:y=p2aa2p(xp)y=p2a+a2ax2peqn.ofQS:y=q2a+a2ax2qsayintersectionpointS(xs,ys)p2a+a2axs2p=q2a+a2axs2qp2aaxs2p=q2aaxs2qxs=2(q+p)pqa2xs=2uva22ys=p2+q2a+aaxs(12p+12q)ys=a2+p2+q22aa(p+q)xs4pqys=a2+(p+q)2pqays=a2+u2vatakinguasparameterwegettheeqn.oflocusofpointS:{x=2uva2y=a2+u2vawithv=14(u2a2l2a2+u2)withugiven,p,qarerootsofz2uz+14(u2a2l2a2+u2)=0p,q=12(uala2+u2)
Commented by mr W last updated on 21/Jan/22
Commented by mr W last updated on 21/Jan/22
Commented by ajfour last updated on 21/Jan/22
great workings sir, i will try n  follow..
greatworkingssir,iwilltrynfollow..
Commented by Tawa11 last updated on 21/Jan/22
Weldone sir
Weldonesir
Answered by ajfour last updated on 23/Jan/22
S(h,k)  ((q−h)/(k−(q^2 /a)))=((2p)/a)   ⇒  ak−q^2 =(a^2 /2)(((q−h)/p))    ((p−h)/(k−(p^2 /a)))=((2q)/a)  ⇒  ak−p^2 =(a^2 /2)(((p−h)/q))  subtracting  ⇒ q^2 −p^2 =(a^2 /2)((p/q)−(q/p))+((a^2 h)/2)((1/p)−(1/q))  ⇒  q+p=((a^2 h)/(2pq))−((a^2 (q+p))/(2pq))  ⇒   q+p=((a^2 h)/(a^2 +2pq))  say  q+p=s,   pq=m    ⇒   s=((a^2 h)/(a^2 +2m))    ...(i)    Adding  2ak−(p^2 +q^2 )=(a^2 /2)((p/q)+(q/p))−((a^2 h)/2)((1/p)+(1/q))  ⇒  2ak−s^2 +2m=(a^2 /2)(((s^2 −2m)/m)−((hs)/m))     .....(ii)  And   s^2 +((s^2 (s^2 −4m))/a^2 )=L^2    ...(iii)  ⇒  using (i) and (iii)  1+((s^2 −4m)/a^2 )=(L^2 /h^2 )(1+(m/a^2 ))  ⇒  m((L^2 /(a^2 h^2 ))+(4/a^2 ))=1−(L^2 /h^2 )  ⇒  m=((a^2 (1−(L^2 /h^2 )))/((4+(L^2 /h^2 ))))     (1/s)=(1/h)+((2m)/(a^2 h))=(1/h)+(2/h)(((1−(L^2 /h^2 ))/(4+(L^2 /h^2 ))))  Now  substituting for m, s in (ii)  ((2ak)/s^2 )+1+((2m)/s^2 )=(a^2 /2)((1/m)−(2/s^2 )−(h/(ms)))  {2ak+2a^2 (((h^2 −L^2 )/(4h^2 +L^2 )))+a^2 }{(1/h)+(2/h)(((h^2 −L^2 )/(4h^2 +L^2 )))}^2          +2 =0  And to make it compact  say  (h/L)=X , (k/L)=Y  ((2a)/L)(Y+((X^2 −1)/(4X^2 +1))+(a/L)){1+2(((X^2 −1)/(4X^2 +1)))}^2              +2X^2 =0  or simply    (X/(((1/2)+((X^2 −1)/(4X^2 +1)))))=±(((2a)/L))^(1/2) (√(((1−X^2 )/(4X^2 +1))−Y−(a/L)))  say   for  a=1, L=2   (x/({1+((x^2 −4)/(2(x^2 +1)))}))=±(√(((4−x^2 )/(4(x^2 +1)))−(y/2)−(1/2)))  ⇒  y=((4−x^2 )/(2(x^2 +1)))−((16(x^2 +1)^2 )/((3x^2 −2)^2 ))−1
S(h,k)qhkq2a=2paakq2=a22(qhp)phkp2a=2qaakp2=a22(phq)subtractingq2p2=a22(pqqp)+a2h2(1p1q)q+p=a2h2pqa2(q+p)2pqq+p=a2ha2+2pqsayq+p=s,pq=ms=a2ha2+2m(i)Adding2ak(p2+q2)=a22(pq+qp)a2h2(1p+1q)2aks2+2m=a22(s22mmhsm)..(ii)Ands2+s2(s24m)a2=L2(iii)using(i)and(iii)1+s24ma2=L2h2(1+ma2)m(L2a2h2+4a2)=1L2h2m=a2(1L2h2)(4+L2h2)1s=1h+2ma2h=1h+2h(1L2h24+L2h2)Nowsubstitutingform,sin(ii)2aks2+1+2ms2=a22(1m2s2hms){2ak+2a2(h2L24h2+L2)+a2}{1h+2h(h2L24h2+L2)}2+2=0AndtomakeitcompactsayhL=X,kL=Y2aL(Y+X214X2+1+aL){1+2(X214X2+1)}2+2X2=0orsimplyX(12+X214X2+1)=±(2aL)1/21X24X2+1YaLsayfora=1,L=2x{1+x242(x2+1)}=±4x24(x2+1)y212y=4x22(x2+1)16(x2+1)2(3x22)21
Commented by ajfour last updated on 23/Jan/22
some little error ...i shall edit  today..
somelittleerrorishalledittoday..

Leave a Reply

Your email address will not be published. Required fields are marked *