Menu Close

Question-164806




Question Number 164806 by saboorhalimi last updated on 22/Jan/22
Commented by cortano1 last updated on 22/Jan/22
 log _(12) (3)=a ⇒log _3 (12)=(1/a)  ⇒1+2 log _3 (2)=(1/a)   ⇒log _3 (2)= ((1−a)/(2a))   ⇒((log _5 (2))/(log _5 (3))) = ((1−a)/(2a))  ⇒log _5 (2)=(((1−a)/(2a))) log _5 (3)
log12(3)=alog3(12)=1a1+2log3(2)=1alog3(2)=1a2alog5(2)log5(3)=1a2alog5(2)=(1a2a)log5(3)
Commented by cortano1 last updated on 22/Jan/22
 log _(12) (3)=((log _5 (3))/(log _5 (12))) = a  ⇒log _5 (3)=a(log _5 (3)+2log _5 (2))  ⇒(1−a)log _5 (3)=2a log _5 (2)  ⇒log _5 (2)=(((1−a))/(2a)) log _5 (3)
log12(3)=log5(3)log5(12)=alog5(3)=a(log5(3)+2log5(2))(1a)log5(3)=2alog5(2)log5(2)=(1a)2alog5(3)
Commented by mr W last updated on 22/Jan/22
is log_5  3 better than log_5  2 ?
islog53betterthanlog52?
Commented by cortano1 last updated on 22/Jan/22
yes
yes
Commented by mr W last updated on 22/Jan/22
and how to get log_5  3?
andhowtogetlog53?
Commented by cortano1 last updated on 22/Jan/22
by calculator
bycalculator
Commented by cortano1 last updated on 22/Jan/22
����������
Answered by MJS_new last updated on 22/Jan/22
log_(12)  3 =a ⇔ log_5  2 =b  or else solve this: ((29))^(1/(17)) =α, (7)^(1/(13)) =?
log123=alog52=borelsesolvethis:2917=α,713=?

Leave a Reply

Your email address will not be published. Required fields are marked *