Menu Close

Question-164874




Question Number 164874 by cortano1 last updated on 22/Jan/22
Answered by mahdipoor last updated on 22/Jan/22
get x+(√(x^2 +1))=t ⇒ x^2 +1=t^2 +x^2 −2xt  ⇒ ((t^2 −1)/(2t))=x  f(t)=(x/(x+1))=(((t^2 −1)/(2t))/((t^2 +2t−1)/(2t)))=((t^2 −1)/(t^2 +2t−1))
$${get}\:{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}={t}\:\Rightarrow\:{x}^{\mathrm{2}} +\mathrm{1}={t}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{2}{xt} \\ $$$$\Rightarrow\:\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{t}}={x} \\ $$$${f}\left({t}\right)=\frac{{x}}{{x}+\mathrm{1}}=\frac{\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{t}}}{\frac{{t}^{\mathrm{2}} +\mathrm{2}{t}−\mathrm{1}}{\mathrm{2}{t}}}=\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{2}{t}−\mathrm{1}}\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *