Question Number 165024 by cortano1 last updated on 25/Jan/22
Commented by cortano1 last updated on 25/Jan/22
$$\:{find}\:{a}. \\ $$$$\left({A}\right)\mathrm{2}\sqrt{\mathrm{46}}\:\:\:\:\:\:\:\left({C}\right)\mathrm{12} \\ $$$$\left({B}\right)\:\mathrm{2}\sqrt{\mathrm{42}}\:\:\:\:\:\:\:\left({D}\right)\:\mathrm{2}\sqrt{\mathrm{39}} \\ $$
Commented by som(math1967) last updated on 25/Jan/22
$${is}\:{a}\:{diameter}\:{sir}? \\ $$
Commented by cortano1 last updated on 25/Jan/22
$${no}\:{sir} \\ $$
Commented by mr W last updated on 25/Jan/22
$${if}\:{a}\:{is}\:{not}\:{the}\:{diameter},\:{what}\:{is}\:{it} \\ $$$${then}? \\ $$
Commented by cortano1 last updated on 25/Jan/22
Commented by som(math1967) last updated on 25/Jan/22
$${a}=\mathrm{2}\sqrt{\mathrm{46}}\:? \\ $$
Commented by cortano1 last updated on 25/Jan/22
$${how}\:{sir}? \\ $$
Answered by mr W last updated on 25/Jan/22
Commented by mr W last updated on 25/Jan/22
$${h}_{\mathrm{1}} =\sqrt{{R}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} } \\ $$$${h}_{\mathrm{2}} =\sqrt{{R}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} } \\ $$$$\sqrt{{R}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }+\sqrt{{R}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }=\mathrm{6} \\ $$$$\sqrt{{R}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }=\mathrm{6}−\sqrt{{R}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} } \\ $$$$\mathrm{6}^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} =\mathrm{2}×\mathrm{6}\sqrt{{R}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} } \\ $$$${R}^{\mathrm{2}} =\mathrm{5}^{\mathrm{2}} +\left(\frac{\mathrm{6}^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }{\mathrm{2}×\mathrm{6}}\right)^{\mathrm{2}} =\mathrm{50} \\ $$$${h}_{\mathrm{1}} =\sqrt{\mathrm{50}−\mathrm{7}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} ={R}^{\mathrm{2}} −\left(\mathrm{3}−{h}_{\mathrm{1}} \right)^{\mathrm{2}} =\mathrm{50}−\mathrm{2}^{\mathrm{2}} =\mathrm{46} \\ $$$$\Rightarrow{a}=\mathrm{2}\sqrt{\mathrm{46}} \\ $$
Commented by Tawa11 last updated on 25/Jan/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$