Menu Close

Question-165054




Question Number 165054 by mathlove last updated on 25/Jan/22
Answered by alephzero last updated on 25/Jan/22
lim_(x→2) ((√(sin (π/x))) : cos (π/(x+2)))^(1/x)  =  = (√((√(sin (π/2))) : cos (π/4))) =  = (√(1 : ((√2)/2))) = (√(2/( (√2)))) = ((√2)/( (√(√2)))) = ((√2)/( (2)^(1/4) )) =   = (((√2)(2^3 )^(1/4) )/2) = ((2^5 )^(1/4) /2) = ((2(2)^(1/4) )/2) = (2)^(1/4)
$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\left(\sqrt{\mathrm{sin}\:\frac{\pi}{{x}}}\::\:\mathrm{cos}\:\frac{\pi}{{x}+\mathrm{2}}\right)^{\frac{\mathrm{1}}{{x}}} \:= \\ $$$$=\:\sqrt{\sqrt{\mathrm{sin}\:\frac{\pi}{\mathrm{2}}}\::\:\mathrm{cos}\:\frac{\pi}{\mathrm{4}}}\:= \\ $$$$=\:\sqrt{\mathrm{1}\::\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}\:=\:\sqrt{\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}}}}\:=\:\frac{\sqrt{\mathrm{2}}}{\:\sqrt{\sqrt{\mathrm{2}}}}\:=\:\frac{\sqrt{\mathrm{2}}}{\:\sqrt[{\mathrm{4}}]{\mathrm{2}}}\:=\: \\ $$$$=\:\frac{\sqrt{\mathrm{2}}\sqrt[{\mathrm{4}}]{\mathrm{2}^{\mathrm{3}} }}{\mathrm{2}}\:=\:\frac{\sqrt[{\mathrm{4}}]{\mathrm{2}^{\mathrm{5}} }}{\mathrm{2}}\:=\:\frac{\mathrm{2}\sqrt[{\mathrm{4}}]{\mathrm{2}}}{\mathrm{2}}\:=\:\sqrt[{\mathrm{4}}]{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *