Question-165357 Tinku Tara June 4, 2023 Mechanics 0 Comments FacebookTweetPin Question Number 165357 by ajfour last updated on 31/Jan/22 Commented by ajfour last updated on 31/Jan/22 Withwhatuministhispossible? Commented by ajfour last updated on 01/Feb/22 thankssir,illtrytoarrive.. Answered by ajfour last updated on 01/Feb/22 Parabola:y=a2−x2letatfirsrcollisionpointP(b,a2−b2)dydx=−2x=−2b=−tanθ⇒tanθ=2bt1=2a−buxa2−b2=uyt1−gt122⇒a2−b2=(2a−b)tanϕ−g(2a−b)2(1+tan2ϕ)2u2letjustbeforereachingPvx=ux,vy=uy−gt1⇒tanϕ=(a2−b22a−b)+g(2a−b)(1+tan2ϕ)2u2….(ii)or2u2g(1+4b2)=2a−b(tanϕ−a2−b22a−b)..(I)⇒vyvx=tanϕ=A+Bux2…(i)&nowduetoreflectionofvelocity,letjustafterhittingP,velocitybeV.Vxcosθ+Vysinθ=uxcosθ+vysinθ&Vycosθ−Vxsinθ=uxsinθ−vycosθ⇒Vx+2bVy=ux+2bvy&Vy−2bVx=2bux−vy⇒Vy=4bux+(4b2−1)vy4b2+1Vx=4bvy−(4b2−1)ux4b2+1t2=bVx&b2=Vyt2−gt222⇒b2=b(VyVx)−g2(bVx)2⇒b2{4bvy−(4b2−1)ux4b2+1}2=b{4bvy−(4b2−1)ux4b2+1}{4bux+(4b2−1)vy4b2+1}−b2g2using..(i)&ux=ucosϕ,uy=usinϕb2{4btanϕ−(4b2−1)4b2+1}2=b{4btanϕ−(4b2−1)4b2+1}{4b+(4b2−1)tanϕ4b2+1}−b2g(1+tan2ϕ)2u2….(iii)ucanbeobtainedintermsoftanϕ.bytheway,ithinkforuminVy=gt2=4bux+(4b2−1)vy4b2+1⇒bg{4bvy−(4b2−1)ux4b2+1}=4bux+(4b2−1)vy4b2+1⇒bg(4b2+1)2=u2{4btanϕ−(4b2−1)}{4b+(4b2−1)tanϕ}&2u2(1+4b2)g=2a−b(tanϕ−a2−b22a−b)⇒2b(1+4b2)(tanϕ−a2−b22a−b)2a−b={4btanϕ−(4b2−1)}{4b+(4b2−1)tanϕ}….hopeless…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-D-xydxdy-with-D-x-y-R-2-x-0-y-0-x-y-3-2-Next Next post: Question-165362 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.