Menu Close

Question-165357




Question Number 165357 by ajfour last updated on 31/Jan/22
Commented by ajfour last updated on 31/Jan/22
With what  u_(min)  is this possible?
Withwhatuministhispossible?
Commented by ajfour last updated on 01/Feb/22
thanks sir, i ll try to arrive..
thankssir,illtrytoarrive..
Answered by ajfour last updated on 01/Feb/22
Parabola:  y=a^2 −x^2   let at firsr collision point   P (b, a^2 −b^2 )  (dy/dx)=−2x=−2b=−tan θ  ⇒  tan θ=2b  t_1 =((2a−b)/u_x )  a^2 −b^2 =u_y t_1 −((gt_1 ^2 )/2)  ⇒ a^2 −b^2 =(2a−b)tan φ−((g(2a−b)^2 (1+tan^2 φ))/(2u^2 ))  let just before reaching P  v_x =u_x  , v_y =u_y −gt_1    ⇒  tan φ=(((a^2 −b^2 )/(2a−b)))+((g(2a−b)(1+tan^2 φ))/(2u^2 ))        ....(ii)  or   ((2u^2 )/(g(1+4b^2 )))=((2a−b)/((tan φ−((a^2 −b^2 )/(2a−b)))))  ..(I)  ⇒  (v_y /v_x )=tan φ=A+(B/u_x ^2 )   ...(i)  &    now due to reflection of velocity,    let just after hitting P,  velocity be V.    V_x cos θ+V_y sin θ=u_x cos θ+v_y sin θ  &      V_y cos θ−V_x sin θ=u_x sin θ−v_y cos θ  ⇒  V_x +2bV_y =u_x +2bv_y   &          V_y −2bV_x =2bu_x −v_y   ⇒  V_y =((4bu_x +(4b^2 −1)v_y )/(4b^2 +1))         V_x =((4bv_y −(4b^2 −1)u_x )/(4b^2 +1))  t_2 =(b/V_x )  &   b^2 =V_y t_2 −((gt_2 ^2 )/2)  ⇒ b^2 =b((V_y /V_x ))−(g/2)((b/V_x ))^2   ⇒ b^2 {((4bv_y −(4b^2 −1)u_x )/(4b^2 +1))}^2     =b{((4bv_y −(4b^2 −1)u_x )/(4b^2 +1))}{((4bu_x +(4b^2 −1)v_y )/(4b^2 +1))}         −((b^2 g)/2)  using ..(i) & u_x =ucos φ, u_y =usin φ  b^2 {((4btan φ−(4b^2 −1))/(4b^2 +1))}^2   =b{((4btan φ−(4b^2 −1))/(4b^2 +1))}{((4b+(4b^2 −1)tan φ)/(4b^2 +1))}              −((b^2 g(1+tan^2 φ))/(2u^2 ))    ....(iii)  u can be obtained in terms of    tan φ.  by the way, i think for u_(min)      V_y =gt_2   =  ((4bu_x +(4b^2 −1)v_y )/(4b^2 +1))  ⇒  ((bg)/({((4bv_y −(4b^2 −1)u_x )/(4b^2 +1))}))=((4bu_x +(4b^2 −1)v_y )/(4b^2 +1))  ⇒ bg(4b^2 +1)^2 =u^2 {4btan φ−(4b^2 −1)}{4b+(4b^2 −1)tan φ}  &  ((2u^2 )/((1+4b^2 )g))=((2a−b)/((tan φ−((a^2 −b^2 )/(2a−b)))))  ⇒  ((2b(1+4b^2 )(tan φ−((a^2 −b^2 )/(2a−b))))/(2a−b))    ={4btan φ−(4b^2 −1)}{4b+(4b^2 −1)tan φ}    ....hopeless....
Parabola:y=a2x2letatfirsrcollisionpointP(b,a2b2)dydx=2x=2b=tanθtanθ=2bt1=2abuxa2b2=uyt1gt122a2b2=(2ab)tanϕg(2ab)2(1+tan2ϕ)2u2letjustbeforereachingPvx=ux,vy=uygt1tanϕ=(a2b22ab)+g(2ab)(1+tan2ϕ)2u2.(ii)or2u2g(1+4b2)=2ab(tanϕa2b22ab)..(I)vyvx=tanϕ=A+Bux2(i)&nowduetoreflectionofvelocity,letjustafterhittingP,velocitybeV.Vxcosθ+Vysinθ=uxcosθ+vysinθ&VycosθVxsinθ=uxsinθvycosθVx+2bVy=ux+2bvy&Vy2bVx=2buxvyVy=4bux+(4b21)vy4b2+1Vx=4bvy(4b21)ux4b2+1t2=bVx&b2=Vyt2gt222b2=b(VyVx)g2(bVx)2b2{4bvy(4b21)ux4b2+1}2=b{4bvy(4b21)ux4b2+1}{4bux+(4b21)vy4b2+1}b2g2using..(i)&ux=ucosϕ,uy=usinϕb2{4btanϕ(4b21)4b2+1}2=b{4btanϕ(4b21)4b2+1}{4b+(4b21)tanϕ4b2+1}b2g(1+tan2ϕ)2u2.(iii)ucanbeobtainedintermsoftanϕ.bytheway,ithinkforuminVy=gt2=4bux+(4b21)vy4b2+1bg{4bvy(4b21)ux4b2+1}=4bux+(4b21)vy4b2+1bg(4b2+1)2=u2{4btanϕ(4b21)}{4b+(4b21)tanϕ}&2u2(1+4b2)g=2ab(tanϕa2b22ab)2b(1+4b2)(tanϕa2b22ab)2ab={4btanϕ(4b21)}{4b+(4b21)tanϕ}.hopeless.

Leave a Reply

Your email address will not be published. Required fields are marked *