Menu Close

Question-165362




Question Number 165362 by HongKing last updated on 31/Jan/22
Answered by aleks041103 last updated on 01/Feb/22
if gcd(a,b)=1 and b>a, then:  for ∀r=0,1,2,...,b−1, ∃k∈N such that  ka≡r(mod b).    In our case, gcd(19,360)=1  ⇒∀θ=1,2,...,359 exists k that:  19k=360.s + θ  but 360°.s +θ is equiv to angle θ.  Q.E.D.    For θ=60:  19k=360s+60=60(6s+1)  gcd(60,19)=1  ⇒k=60m  19m=6s+1  18m+m=6s+1  ⇒6(3m−s)=1−m  ⇒m=1,s=3 is a solution.  ⇒k=60  If we stack 60 angles of 19°, then we would  get an angle of 60°.
$${if}\:{gcd}\left({a},{b}\right)=\mathrm{1}\:{and}\:{b}>{a},\:{then}: \\ $$$${for}\:\forall{r}=\mathrm{0},\mathrm{1},\mathrm{2},…,{b}−\mathrm{1},\:\exists{k}\in\mathbb{N}\:{such}\:{that} \\ $$$${ka}\equiv{r}\left({mod}\:{b}\right). \\ $$$$ \\ $$$${In}\:{our}\:{case},\:{gcd}\left(\mathrm{19},\mathrm{360}\right)=\mathrm{1} \\ $$$$\Rightarrow\forall\theta=\mathrm{1},\mathrm{2},…,\mathrm{359}\:{exists}\:{k}\:{that}: \\ $$$$\mathrm{19}{k}=\mathrm{360}.{s}\:+\:\theta \\ $$$${but}\:\mathrm{360}°.{s}\:+\theta\:{is}\:{equiv}\:{to}\:{angle}\:\theta. \\ $$$${Q}.{E}.{D}. \\ $$$$ \\ $$$${For}\:\theta=\mathrm{60}: \\ $$$$\mathrm{19}{k}=\mathrm{360}{s}+\mathrm{60}=\mathrm{60}\left(\mathrm{6}{s}+\mathrm{1}\right) \\ $$$${gcd}\left(\mathrm{60},\mathrm{19}\right)=\mathrm{1} \\ $$$$\Rightarrow{k}=\mathrm{60}{m} \\ $$$$\mathrm{19}{m}=\mathrm{6}{s}+\mathrm{1} \\ $$$$\mathrm{18}{m}+{m}=\mathrm{6}{s}+\mathrm{1} \\ $$$$\Rightarrow\mathrm{6}\left(\mathrm{3}{m}−{s}\right)=\mathrm{1}−{m} \\ $$$$\Rightarrow{m}=\mathrm{1},{s}=\mathrm{3}\:{is}\:{a}\:{solution}. \\ $$$$\Rightarrow{k}=\mathrm{60} \\ $$$${If}\:{we}\:{stack}\:\mathrm{60}\:{angles}\:{of}\:\mathrm{19}°,\:{then}\:{we}\:{would} \\ $$$${get}\:{an}\:{angle}\:{of}\:\mathrm{60}°. \\ $$
Commented by HongKing last updated on 01/Feb/22
cool dear Sir thank you so much
$$\mathrm{cool}\:\mathrm{dear}\:\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *