Menu Close

Question-165364




Question Number 165364 by mathlove last updated on 31/Jan/22
Answered by Ar Brandon last updated on 31/Jan/22
S=(1/(1+e^(−99) ))+(1/(1+e^(−98) ))+∙∙∙+(1/(1+e^(98) ))+(1/(1+e^(99) ))      =(e^(99) /(1+e^(99) ))+(e^(98) /(1+e^(98) ))+∙∙∙+(1/2)+∙∙∙+(1/(1+e^(98) ))+(1/(1+e^(99) ))      =((1+e^(99) )/(1+e^(99) ))+((1+e^(98) )/(1+e^(98) ))+∙∙∙+(1/2)=99+(1/2)=((199)/2)
$${S}=\frac{\mathrm{1}}{\mathrm{1}+{e}^{−\mathrm{99}} }+\frac{\mathrm{1}}{\mathrm{1}+{e}^{−\mathrm{98}} }+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{\mathrm{1}+{e}^{\mathrm{98}} }+\frac{\mathrm{1}}{\mathrm{1}+{e}^{\mathrm{99}} } \\ $$$$\:\:\:\:=\frac{{e}^{\mathrm{99}} }{\mathrm{1}+{e}^{\mathrm{99}} }+\frac{{e}^{\mathrm{98}} }{\mathrm{1}+{e}^{\mathrm{98}} }+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{\mathrm{2}}+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{\mathrm{1}+{e}^{\mathrm{98}} }+\frac{\mathrm{1}}{\mathrm{1}+{e}^{\mathrm{99}} } \\ $$$$\:\:\:\:=\frac{\mathrm{1}+{e}^{\mathrm{99}} }{\mathrm{1}+{e}^{\mathrm{99}} }+\frac{\mathrm{1}+{e}^{\mathrm{98}} }{\mathrm{1}+{e}^{\mathrm{98}} }+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{99}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{199}}{\mathrm{2}} \\ $$
Commented by mathlove last updated on 31/Jan/22
thanks
$${thanks} \\ $$
Answered by Ar Brandon last updated on 31/Jan/22
S=Σ_(n=1) ^(99) ((1/(1+e^(−n) ))+(1/(1+e^n )))+(1/2)     =Σ_(n=1) ^(99) (((e^n +1)/(e^n +1)))+(1/2)=99+(1/2)
$${S}=\underset{{n}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{1}+{e}^{−{n}} }+\frac{\mathrm{1}}{\mathrm{1}+{e}^{{n}} }\right)+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:=\underset{{n}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\left(\frac{{e}^{{n}} +\mathrm{1}}{{e}^{{n}} +\mathrm{1}}\right)+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{99}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by mathlove last updated on 31/Jan/22
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *