Question Number 165419 by mathlove last updated on 01/Feb/22
Answered by TheSupreme last updated on 01/Feb/22
$$\left({a}+\frac{\mathrm{1}}{{a}}\right)={x} \\ $$$${a}^{\mathrm{2}} +\frac{\mathrm{1}}{{a}^{\mathrm{2}} }=\left({a}+\frac{\mathrm{1}}{{a}}\right)^{\mathrm{2}} −\mathrm{2}={x}^{\mathrm{2}} −\mathrm{2} \\ $$$${a}^{\mathrm{3}} +\frac{\mathrm{1}}{{a}^{\mathrm{3}} }=\left({a}+\frac{\mathrm{1}}{{a}}\right)^{\mathrm{3}} −\mathrm{3}{a}−\mathrm{3}\frac{\mathrm{1}}{{a}}={x}^{\mathrm{3}} −\mathrm{3}{x} \\ $$$${x}+{x}^{\mathrm{2}} −\mathrm{2}+{x}^{\mathrm{3}} −\mathrm{3}{x}=\mathrm{28} \\ $$$${x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{30}=\mathrm{0} \\ $$$$\left({x}−\mathrm{3}\right)\left({x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{10}\right)=\mathrm{0} \\ $$$${x}=\mathrm{3} \\ $$$${a}+\frac{\mathrm{1}}{{a}}=\mathrm{3} \\ $$$${a}^{\mathrm{2}} −\mathrm{3}{a}+\mathrm{1}=\mathrm{0} \\ $$$${a}=\frac{\mathrm{3}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\left(\mathrm{2}{a}−\mathrm{3}\right)^{\mathrm{2}} =\left(\pm\sqrt{\mathrm{5}}\right)^{\mathrm{2}} =\mathrm{5} \\ $$