Menu Close

Question-165441




Question Number 165441 by mnjuly1970 last updated on 01/Feb/22
Answered by mahdipoor last updated on 01/Feb/22
if g(x) is continuous and increment  function in x≥a ⇒lim_(x→a^+ ) ⌊g(x)⌋=⌊g(a)⌋  prove: lim_(x→a^+ ) g(x)=g(a)⇒∀ε>0   ∃σ>0  ,  0<x−a<σ⇒∣g(x)−g(a)∣<ε ⇒  0<g(x)−g(a)<ε⇒  0≤⌊g(x)⌋−⌊g(a)⌋≤g(x)−g(a)<ε ⇒  ∣⌊g(x)⌋−⌊g(a)⌋∣<ε ⇒lim_(x→a^+ ) ⌊g(x)⌋=⌊g(a)⌋  ,  h(x)=nf(x) is continuous and increment  function in x≥c=0.5(3+(√5)) ⇒  lim_(x→c^+ ) ⌊h(x)⌋= ⌊h(c)⌋=⌊(n/2)⌋=3  ⇒n=6 or 7
$$\mathrm{if}\:\mathrm{g}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{and}\:\mathrm{increment} \\ $$$$\mathrm{function}\:\mathrm{in}\:\mathrm{x}\geqslant\mathrm{a}\:\Rightarrow\underset{{x}\rightarrow\mathrm{a}^{+} } {\mathrm{lim}}\lfloor\mathrm{g}\left(\mathrm{x}\right)\rfloor=\lfloor\mathrm{g}\left(\mathrm{a}\right)\rfloor \\ $$$${prove}:\:\underset{{x}\rightarrow\mathrm{a}^{+} } {\mathrm{lim}g}\left(\mathrm{x}\right)=\mathrm{g}\left(\mathrm{a}\right)\Rightarrow\forall\varepsilon>\mathrm{0}\:\:\:\exists\sigma>\mathrm{0}\:\:, \\ $$$$\mathrm{0}<\mathrm{x}−\mathrm{a}<\sigma\Rightarrow\mid\mathrm{g}\left(\mathrm{x}\right)−\mathrm{g}\left(\mathrm{a}\right)\mid<\varepsilon\:\Rightarrow \\ $$$$\mathrm{0}<\mathrm{g}\left(\mathrm{x}\right)−\mathrm{g}\left(\mathrm{a}\right)<\varepsilon\Rightarrow \\ $$$$\mathrm{0}\leqslant\lfloor\mathrm{g}\left(\mathrm{x}\right)\rfloor−\lfloor\mathrm{g}\left(\mathrm{a}\right)\rfloor\leqslant\mathrm{g}\left(\mathrm{x}\right)−\mathrm{g}\left(\mathrm{a}\right)<\varepsilon\:\Rightarrow \\ $$$$\mid\lfloor\mathrm{g}\left(\mathrm{x}\right)\rfloor−\lfloor\mathrm{g}\left(\mathrm{a}\right)\rfloor\mid<\varepsilon\:\Rightarrow\underset{{x}\rightarrow\mathrm{a}^{+} } {\mathrm{lim}}\lfloor\mathrm{g}\left(\mathrm{x}\right)\rfloor=\lfloor\mathrm{g}\left(\mathrm{a}\right)\rfloor \\ $$$$, \\ $$$${h}\left({x}\right)={nf}\left({x}\right)\:{is}\:{continuous}\:{and}\:{increment} \\ $$$${function}\:{in}\:{x}\geqslant{c}=\mathrm{0}.\mathrm{5}\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)\:\Rightarrow \\ $$$$\underset{{x}\rightarrow{c}^{+} } {\mathrm{lim}}\lfloor{h}\left({x}\right)\rfloor=\:\lfloor{h}\left({c}\right)\rfloor=\lfloor\frac{{n}}{\mathrm{2}}\rfloor=\mathrm{3} \\ $$$$\Rightarrow{n}=\mathrm{6}\:{or}\:\mathrm{7} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *