Question Number 165483 by mathlove last updated on 02/Feb/22
Commented by MJS_new last updated on 04/Feb/22
$$\mathrm{for}\:{x}={y}={z}\:\mathrm{there}\:\mathrm{are}\:\mathrm{3}\:\mathrm{solutions}\:\mathrm{in}\:\mathbb{C} \\ $$$$\mathrm{for}\:{x}={y}\neq{z}\:\mathrm{there}\:\mathrm{are}\:\mathrm{9}\:\mathrm{solutions}\:\mathrm{in}\:\mathbb{C} \\ $$$$\:\:\:\:\:\left(\mathrm{and}\:\mathrm{of}\:\mathrm{course}\:{x},\:{y},\:{z}\:\mathrm{are}\:\mathrm{interchangeable}\right) \\ $$$$\mathrm{for}\:{x}\neq{y}\neq{z}\:\mathrm{I}\:\mathrm{had}\:\mathrm{no}\:\mathrm{time}\:\mathrm{yet} \\ $$
Answered by alephzero last updated on 02/Feb/22
$${x}\:=\:{y}\:=\:{z} \\ $$
Commented by mathlove last updated on 02/Feb/22
$${how}? \\ $$
Commented by alephzero last updated on 02/Feb/22
$$\mathrm{It}'\mathrm{s}\:\mathrm{obvious} \\ $$
Answered by Rasheed.Sindhi last updated on 02/Feb/22
$$\begin{cases}{\mathrm{12}{x}^{\mathrm{3}} +\mathrm{12}{y}^{\mathrm{3}} +\mathrm{9}{z}=\mathrm{2}……\left({i}\right)}\\{\mathrm{12}{y}^{\mathrm{3}} +\mathrm{12}{z}^{\mathrm{3}} +\mathrm{9}{x}=\mathrm{2}……\left({ii}\right)}\\{\mathrm{12}{z}^{\mathrm{3}} +\mathrm{12}{x}^{\mathrm{3}} +\mathrm{9}{y}=\mathrm{2}…\:\:\:\:\left({iii}\right)}\end{cases} \\ $$$$\left({i}\right)−\left({iii}\right):\mathrm{12}{y}^{\mathrm{3}} −\mathrm{12}{z}^{\mathrm{3}} +\mathrm{9}{z}−\mathrm{9}{y}=\mathrm{0} \\ $$$$\mathrm{12}\left({y}−{z}\right)\left({y}^{\mathrm{2}} +{yz}+{z}^{\mathrm{2}} \right)−\mathrm{9}\left({y}−{z}\right)=\mathrm{0} \\ $$$$\left({y}−{z}\right)\left(\mathrm{12}\left({y}^{\mathrm{2}} +{yz}+{z}^{\mathrm{2}} \right)−\mathrm{9}\right)=\mathrm{0} \\ $$$${y}={z}\:\:\mid\:{y}^{\mathrm{2}} +{yz}+{z}^{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{4}} \\ $$$${Similarly}, \\ $$$$\left({iii}\right)−\left({ii}\right)\Rightarrow{z}={x} \\ $$$$\therefore\:{x}={y}={z} \\ $$
Commented by mr W last updated on 03/Feb/22
$${x}={y}={z}\:{is}\:{only}\:{one}\:{possibitity}\:{which} \\ $$$${gives}\:{us}\:\mathrm{3}\:{solutions}. \\ $$$${what}\:{about}\:{other}\:{possibilities}: \\ $$$${x}={y}\neq{z} \\ $$$${x}={z}\neq{y} \\ $$$${y}={z}\neq{x} \\ $$$${x}\neq{y}\neq{z} \\ $$$${i}\:{think}\:{we}\:{could}\:{get}\:{more}\:{solutions}\: \\ $$$${from}\:{these}\:{possibilities}. \\ $$
Commented by Rasheed.Sindhi last updated on 03/Feb/22
$$\begin{cases}{{y}−{z}=\mathrm{0}\:\mid\:{y}^{\mathrm{2}} +{yz}+{z}^{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{4}}….\left({i}\right)}\\{{x}−{y}=\mathrm{0}\:\mid\:{x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{4}}…\left({ii}\right)}\\{{z}−{x}=\mathrm{0}\:\mid\:{z}^{\mathrm{2}} +{zx}+{x}^{\mathrm{2}} =\frac{\mathrm{3}}{\mathrm{4}}…\left({iii}\right)}\end{cases} \\ $$$$\left({ii}\right)−\left({i}\right):\:{x}^{\mathrm{2}} +{xy}−{yz}−{z}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({x}−{z}\right)\left({x}+{z}\right)+{y}\left({x}−{z}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({x}−{z}\right)\left({x}+{y}+{z}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}={z}\:\mid\:{x}+{y}+{z}=\mathrm{0} \\ $$