Menu Close

Question-165532




Question Number 165532 by mathlove last updated on 03/Feb/22
Answered by amin96 last updated on 03/Feb/22
S=Σ_(n=2) ^∞ (1/(n^2 −1))=Σ_(n=2) ^∞ (1/((n−1)(n+1)))=  =(1/2)Σ_(n=2) ^∞ (1/(n−1))−(1/2)Σ_(n=2) ^∞ (1/(n+1))=  =(1/2)(1+(1/2)+(1/3)+…−((1/3)+(1/4)+(1/5)+…))=  =(1/2)(1+(1/2))=(3/4)
$$\boldsymbol{\mathrm{S}}=\underset{\boldsymbol{\mathrm{n}}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} −\mathrm{1}}=\underset{\boldsymbol{\mathrm{n}}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\boldsymbol{\mathrm{n}}−\mathrm{1}\right)\left(\boldsymbol{\mathrm{n}}+\mathrm{1}\right)}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{\boldsymbol{\mathrm{n}}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}}\underset{\boldsymbol{\mathrm{n}}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}+\mathrm{1}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\ldots−\left(\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}+\ldots\right)\right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *