Menu Close

Question-165795




Question Number 165795 by mnjuly1970 last updated on 08/Feb/22
Answered by ArielVyny last updated on 08/Feb/22
soit f(x,y)=x^2 +(1/x^2 )+y^2 +(y/x)  montrons que f(x,y)≥(√3)  x≠0  -fixons x∈R on a f_x (y)=x^2 +(1/x^2 )+y^2 +y(1/x)  f_x (y)=(y+(1/(2x)))^2 −(1/(4x^2 ))+x^2 +(1/x^2 )             =(y+(1/(2x)))^2 +(3/(4x^2 ))+x^2   α=(1/(2x))→x=(1/(2α))  f_x (y)=(y+α)^2 +3α^2 +(1/(4α^2 ))  posons α^2 ∈[0;1]  on a 3α^2 +(1/(4α^2 ))≥(√3)  de meme pour α^2 ∈]1;+∞[ 3α^2 +(1/(4α^2 ))≥(√3)  de plus cbaque terme de f_x (y) est positif donc  f_x (y)≥(√3)  -fixons y  f_y (x)=x^2 +(1/x^2 )+(y/x)+y^2    (x≠0)  f_y (x)=(x−(1/x))^2 +y^2 +2+(y/x)             =(x−(1/x))^2 +(y+(1/(2x)))^2 −(1/(2x^2 ))+2  par raisonnement analogue on trouve l′inegalite  NB on pourra etudier q(x)=−(1/(2x^2 ))+2−(√3)  extraire l′inerval ou q(x) est negatif  et montrerque si l′on ajoute (x−(1/x))^2 +(y+(1/(2x)))^2   f_y (x)≥(√3)
soitf(x,y)=x2+1x2+y2+yxmontronsquef(x,y)3x0fixonsxRonafx(y)=x2+1x2+y2+y1xfx(y)=(y+12x)214x2+x2+1x2=(y+12x)2+34x2+x2α=12xx=12αfx(y)=(y+α)2+3α2+14α2posonsα2[0;1]ona3α2+14α23dememepourα2]1;+[3α2+14α23depluscbaquetermedefx(y)estpositifdoncfx(y)3fixonsyfy(x)=x2+1x2+yx+y2(x0)fy(x)=(x1x)2+y2+2+yx=(x1x)2+(y+12x)212x2+2parraisonnementanalogueontrouvelinegaliteNBonpourraetudierq(x)=12x2+23extrairelinervalouq(x)estnegatifetmontrerquesilonajoute(x1x)2+(y+12x)2fy(x)3
Commented by mnjuly1970 last updated on 09/Feb/22
very nice thank you sir
verynicethankyousir
Answered by mr W last updated on 08/Feb/22
x^2 +(1/x^2 )+y^2 +(y/x)  =x^2 +(3/(4x^2 ))+(1/(4x^2 ))+(y/x)+y^2   =x^2 +(3/(4x^2 ))+((1/(2x))+y)^2   ≥x^2 +(3/(4x^2 ))  ≥2(√(x^2 ×(3/(4x^2 ))))=(√3)
x2+1x2+y2+yx=x2+34x2+14x2+yx+y2=x2+34x2+(12x+y)2x2+34x22x2×34x2=3
Commented by mnjuly1970 last updated on 09/Feb/22
    thanks alot sir W
thanksalotsirW

Leave a Reply

Your email address will not be published. Required fields are marked *