Question Number 165804 by cortano1 last updated on 08/Feb/22
Answered by MJS_new last updated on 09/Feb/22
$$\left(\mathrm{1}\right)\:{y}=−\frac{{x}\left(\mathrm{5}{x}−\mathrm{1}\right)}{\mathrm{3}\left({x}−\mathrm{1}\right)} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{2}\right)\:{x}^{\mathrm{3}} −{x}^{\mathrm{2}} =\frac{{x}^{\mathrm{2}} \left(\mathrm{5}{x}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{5}{x}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{9}\left({x}−\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\Rightarrow\:{x}=\mathrm{0}\wedge{y}=\mathrm{0}\:\bigstar \\ $$$${x}^{\mathrm{4}} −\frac{\mathrm{7}}{\mathrm{58}}{x}^{\mathrm{3}} −\frac{\mathrm{37}}{\mathrm{58}}{x}^{\mathrm{2}} +\frac{\mathrm{23}}{\mathrm{58}}{x}−\frac{\mathrm{5}}{\mathrm{58}}=\mathrm{0} \\ $$$$\left({x}+\mathrm{1}\right)\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)\left({x}^{\mathrm{2}} −\frac{\mathrm{28}}{\mathrm{29}}{x}+\frac{\mathrm{5}}{\mathrm{29}}\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${x}=−\mathrm{1}\wedge{y}=\mathrm{1}\:\bigstar \\ $$$${x}={y}=\frac{\mathrm{1}}{\mathrm{2}}\:\bigstar \\ $$$${x}=\frac{\mathrm{9}}{\mathrm{29}}\pm\frac{\mathrm{8}}{\mathrm{29}}\mathrm{i}\wedge{y}=−\frac{\mathrm{16}}{\mathrm{87}}\pm\frac{\mathrm{6}}{\mathrm{29}}\mathrm{i}\:\bigstar \\ $$$$\bigstar\:\mathrm{3}\:\mathrm{real}\:\&\:\mathrm{2}\:\mathrm{complex}\:\mathrm{solutions} \\ $$
Commented by Tawa11 last updated on 10/Feb/22
$$\mathrm{Weldone}\:\mathrm{sir} \\ $$