Menu Close

Question-165900




Question Number 165900 by cherokeesay last updated on 09/Feb/22
Commented by som(math1967) last updated on 10/Feb/22
Is the area   {(1/3)×π×8−π(4(√3)−6)^2 −2(√3)} cm^2 ?
$${Is}\:{the}\:{area} \\ $$$$\:\left\{\frac{\mathrm{1}}{\mathrm{3}}×\pi×\mathrm{8}−\pi\left(\mathrm{4}\sqrt{\mathrm{3}}−\mathrm{6}\right)^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}\right\}\:{cm}^{\mathrm{2}} ? \\ $$
Commented by cherokeesay last updated on 10/Feb/22
⋍ 2,2  goog answer !  thank you.
$$\backsimeq\:\mathrm{2},\mathrm{2} \\ $$$${goog}\:{answer}\:! \\ $$$${thank}\:{you}. \\ $$
Commented by som(math1967) last updated on 10/Feb/22
Commented by som(math1967) last updated on 10/Feb/22
cos∠CAB=((AB)/(AC))=(2/4)⇒∠CAB=60°  BC=AB×tan60=2(√3)cm  ar of  sectorCAE=((60)/(360))×π×4^2 =(1/3)π×8  ar.of △ABC=(1/2)×2×2(√3)=2(√3)cm^2   AO=4−r    AL=2+r  (4−r)^2 =(2+r)^2 +r^2   r^2 +12r−12=0  r=4(√3)−6  ar. of  hatch part  =(1/3)×8π−2(√3)−π(4(√3)−6)^2 cm^2
$${cos}\angle{CAB}=\frac{{AB}}{{AC}}=\frac{\mathrm{2}}{\mathrm{4}}\Rightarrow\angle{CAB}=\mathrm{60}° \\ $$$${BC}={AB}×{tan}\mathrm{60}=\mathrm{2}\sqrt{\mathrm{3}}{cm} \\ $$$${ar}\:{of}\:\:{sectorCAE}=\frac{\mathrm{60}}{\mathrm{360}}×\pi×\mathrm{4}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{3}}\pi×\mathrm{8} \\ $$$${ar}.{of}\:\bigtriangleup{ABC}=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{2}×\mathrm{2}\sqrt{\mathrm{3}}=\mathrm{2}\sqrt{\mathrm{3}}{cm}^{\mathrm{2}} \\ $$$${AO}=\mathrm{4}−{r}\:\:\:\:{AL}=\mathrm{2}+{r} \\ $$$$\left(\mathrm{4}−{r}\right)^{\mathrm{2}} =\left(\mathrm{2}+{r}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} \\ $$$${r}^{\mathrm{2}} +\mathrm{12}{r}−\mathrm{12}=\mathrm{0} \\ $$$${r}=\mathrm{4}\sqrt{\mathrm{3}}−\mathrm{6} \\ $$$${ar}.\:{of}\:\:{hatch}\:{part} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}×\mathrm{8}\pi−\mathrm{2}\sqrt{\mathrm{3}}−\pi\left(\mathrm{4}\sqrt{\mathrm{3}}−\mathrm{6}\right)^{\mathrm{2}} {cm}^{\mathrm{2}} \\ $$
Commented by Tawa11 last updated on 10/Feb/22
Weldone sir
$$\mathrm{Weldone}\:\mathrm{sir} \\ $$
Answered by Eulerian last updated on 10/Feb/22
   Solution:   Given that:   a = 2 cm   b = (√(4^2 −2^2 )) = 2(√3) cm   sin(θ) = (1/2)  ⇒  θ = 30°   (4−r)^2  = r^2 +(2+r)^2    r^2 +12r−12 = 0   By quadratic formula:   r = ((−12+(√(12^2 +4(12))))/2) = 4(√3)−6  cm      ∴   Area_(hatched)  = ((π(4^2 ))/4) − [π(4(√3)−6)^2  + ((2(4))/2) + (((30°)/(360°)))∙π(4)^2 ] = (48π(√3) − ((244π)/3) − 4) cm^2
$$ \\ $$$$\:\boldsymbol{\mathrm{Solution}}: \\ $$$$\:\mathrm{Given}\:\mathrm{that}: \\ $$$$\:\mathrm{a}\:=\:\mathrm{2}\:\mathrm{cm} \\ $$$$\:\mathrm{b}\:=\:\sqrt{\mathrm{4}^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} }\:=\:\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{cm} \\ $$$$\:\mathrm{sin}\left(\theta\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\Rightarrow\:\:\theta\:=\:\mathrm{30}° \\ $$$$\:\left(\mathrm{4}−\mathrm{r}\right)^{\mathrm{2}} \:=\:\mathrm{r}^{\mathrm{2}} +\left(\mathrm{2}+\mathrm{r}\right)^{\mathrm{2}} \\ $$$$\:\mathrm{r}^{\mathrm{2}} +\mathrm{12r}−\mathrm{12}\:=\:\mathrm{0} \\ $$$$\:\mathrm{By}\:\mathrm{quadratic}\:\mathrm{formula}: \\ $$$$\:\mathrm{r}\:=\:\frac{−\mathrm{12}+\sqrt{\mathrm{12}^{\mathrm{2}} +\mathrm{4}\left(\mathrm{12}\right)}}{\mathrm{2}}\:=\:\mathrm{4}\sqrt{\mathrm{3}}−\mathrm{6}\:\:\mathrm{cm} \\ $$$$\: \\ $$$$\:\therefore \\ $$$$\:\mathrm{Area}_{\mathrm{hatched}} \:=\:\frac{\pi\left(\mathrm{4}^{\mathrm{2}} \right)}{\mathrm{4}}\:−\:\left[\pi\left(\mathrm{4}\sqrt{\mathrm{3}}−\mathrm{6}\right)^{\mathrm{2}} \:+\:\frac{\mathrm{2}\left(\mathrm{4}\right)}{\mathrm{2}}\:+\:\left(\frac{\mathrm{30}°}{\mathrm{360}°}\right)\centerdot\pi\left(\mathrm{4}\right)^{\mathrm{2}} \right]\:=\:\left(\mathrm{48}\pi\sqrt{\mathrm{3}}\:−\:\frac{\mathrm{244}\pi}{\mathrm{3}}\:−\:\mathrm{4}\right)\:\mathrm{cm}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\: \\ $$
Commented by cherokeesay last updated on 10/Feb/22
please, try again !
$${please},\:{try}\:{again}\:! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *