Menu Close

Question-166111




Question Number 166111 by DAVONG last updated on 13/Feb/22
Answered by qaz last updated on 13/Feb/22
lim_(x→0) ((e^x^2  sin x−x(1+(5/6)x^2 ))/x^5 )  =lim_(x→0) (((1+x^2 +(1/2)x^4 +o(x^4 ))(x−(1/6)x^3 +(1/(120))x^5 +o(x^5 ))−x−(5/6)x^3 )/x^5 )  =lim_(x→0) (((x+(5/6)x^3 +((41)/(120))x^5 +o(x^5 ))−x−(5/6)x^3 )/x^5 )  =((41)/(120))
$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \mathrm{sin}\:\mathrm{x}−\mathrm{x}\left(\mathrm{1}+\frac{\mathrm{5}}{\mathrm{6}}\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{5}} } \\ $$$$=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{4}} +\mathrm{o}\left(\mathrm{x}^{\mathrm{4}} \right)\right)\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{6}}\mathrm{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{120}}\mathrm{x}^{\mathrm{5}} +\mathrm{o}\left(\mathrm{x}^{\mathrm{5}} \right)\right)−\mathrm{x}−\frac{\mathrm{5}}{\mathrm{6}}\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{5}} } \\ $$$$=\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left(\mathrm{x}+\frac{\mathrm{5}}{\mathrm{6}}\mathrm{x}^{\mathrm{3}} +\frac{\mathrm{41}}{\mathrm{120}}\mathrm{x}^{\mathrm{5}} +\mathrm{o}\left(\mathrm{x}^{\mathrm{5}} \right)\right)−\mathrm{x}−\frac{\mathrm{5}}{\mathrm{6}}\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{5}} } \\ $$$$=\frac{\mathrm{41}}{\mathrm{120}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *