Menu Close

Question-166640




Question Number 166640 by cherokeesay last updated on 23/Feb/22
Answered by som(math1967) last updated on 24/Feb/22
Area with circle  =2×{(π/6)×4^2 −(1/2)×((√3)/4)×4^2 }cm^2   =(((16π)/3) −4(√3))cm^2    let radius of circle =r  ∴(4−r)^2 =r^2 +2^2    16−8r+r^2 =r^2 +4  ⇒r=(3/2)cm  ∴ area of hached region  =(((16π)/3) −4(√3)) −π×((3/2))^2   =(((37π)/(12)) −4(√3))cm^2
$${Area}\:{with}\:{circle} \\ $$$$=\mathrm{2}×\left\{\frac{\pi}{\mathrm{6}}×\mathrm{4}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}×\mathrm{4}^{\mathrm{2}} \right\}{cm}^{\mathrm{2}} \\ $$$$=\left(\frac{\mathrm{16}\pi}{\mathrm{3}}\:−\mathrm{4}\sqrt{\mathrm{3}}\right){cm}^{\mathrm{2}} \: \\ $$$${let}\:{radius}\:{of}\:{circle}\:={r} \\ $$$$\therefore\left(\mathrm{4}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} \\ $$$$\:\mathrm{16}−\mathrm{8}{r}+{r}^{\mathrm{2}} ={r}^{\mathrm{2}} +\mathrm{4} \\ $$$$\Rightarrow{r}=\frac{\mathrm{3}}{\mathrm{2}}{cm} \\ $$$$\therefore\:{area}\:{of}\:{hached}\:{region} \\ $$$$=\left(\frac{\mathrm{16}\pi}{\mathrm{3}}\:−\mathrm{4}\sqrt{\mathrm{3}}\right)\:−\pi×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$=\left(\frac{\mathrm{37}\pi}{\mathrm{12}}\:−\mathrm{4}\sqrt{\mathrm{3}}\right){cm}^{\mathrm{2}} \\ $$
Commented by cherokeesay last updated on 24/Feb/22
very nice  thank you sir.
$${very}\:{nice} \\ $$$${thank}\:{you}\:{sir}. \\ $$
Commented by Tawa11 last updated on 26/Feb/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *