Menu Close

Question-166686




Question Number 166686 by cortano1 last updated on 25/Feb/22
Commented by greogoury55 last updated on 26/Feb/22
 (1/(1−sin^2  10°))+(2/(1−cos 40°)) +(2/(1−cos 80°))−2  = (1/(1−cos^2 80°))+(2/(1−cos 80°))+(2/(1−cos 40°))−2  = ((1+2(1+cos 80°))/(1−cos^2 80))+(2/(1−cos 40°))−2  = ((3+2cos 80°)/(1−(((1+cos 20°)/2))^2 ))+(2/(1−cos 40°))−2  =((12+8cos 80°)/(3−2cos 20°−cos^2 20°))+(2/(1−cos 40°))−2
$$\:\frac{\mathrm{1}}{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\mathrm{10}°}+\frac{\mathrm{2}}{\mathrm{1}−\mathrm{cos}\:\mathrm{40}°}\:+\frac{\mathrm{2}}{\mathrm{1}−\mathrm{cos}\:\mathrm{80}°}−\mathrm{2} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \mathrm{80}°}+\frac{\mathrm{2}}{\mathrm{1}−\mathrm{cos}\:\mathrm{80}°}+\frac{\mathrm{2}}{\mathrm{1}−\mathrm{cos}\:\mathrm{40}°}−\mathrm{2} \\ $$$$=\:\frac{\mathrm{1}+\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\mathrm{80}°\right)}{\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \mathrm{80}}+\frac{\mathrm{2}}{\mathrm{1}−\mathrm{cos}\:\mathrm{40}°}−\mathrm{2} \\ $$$$=\:\frac{\mathrm{3}+\mathrm{2cos}\:\mathrm{80}°}{\mathrm{1}−\left(\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{20}°}{\mathrm{2}}\right)^{\mathrm{2}} }+\frac{\mathrm{2}}{\mathrm{1}−\mathrm{cos}\:\mathrm{40}°}−\mathrm{2} \\ $$$$=\frac{\mathrm{12}+\mathrm{8cos}\:\mathrm{80}°}{\mathrm{3}−\mathrm{2cos}\:\mathrm{20}°−\mathrm{cos}\:^{\mathrm{2}} \mathrm{20}°}+\frac{\mathrm{2}}{\mathrm{1}−\mathrm{cos}\:\mathrm{40}°}−\mathrm{2} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *