Question Number 166830 by HongKing last updated on 28/Feb/22
Answered by nurtani last updated on 01/Mar/22
$$\left({x}+\frac{\mathrm{1}}{{y}}\right)\left({y}+\frac{\mathrm{1}}{{z}}\right)\left({z}+\frac{\mathrm{1}}{{x}}\right)=\left({xy}+\frac{{x}}{{z}}+\mathrm{1}+\frac{\mathrm{1}}{{yz}}\right)\left({z}+\frac{\mathrm{1}}{{x}}\right)={xyz}+{x}+{z}+\frac{\mathrm{1}}{{y}}+{y}+\frac{\mathrm{1}}{{z}}+\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{xyz}}=\:\left(\mathrm{4}\right)\left(\mathrm{1}\right)\left(\frac{\mathrm{7}}{\mathrm{3}}\right) \\ $$$$\Leftrightarrow\:{xyz}+\frac{\mathrm{1}}{{xyz}}+\left({x}+\frac{\mathrm{1}}{{y}}\right)+\left({y}+\frac{\mathrm{1}}{{z}}\right)+\left({z}+\frac{\mathrm{1}}{{x}}\right)=\left(\mathrm{4}\right)\left(\mathrm{1}\right)\left(\frac{\mathrm{7}}{\mathrm{3}}\right)=\frac{\mathrm{28}}{\mathrm{3}} \\ $$$$\Leftrightarrow\:{xyz}+\frac{\mathrm{1}}{{xyz}}+\mathrm{4}+\mathrm{1}+\frac{\mathrm{7}}{\mathrm{3}}=\frac{\mathrm{28}}{\mathrm{3}} \\ $$$$\Leftrightarrow\:{xyz}+\frac{\mathrm{1}}{{xyz}}+\frac{\mathrm{22}}{\mathrm{3}}=\frac{\mathrm{28}}{\mathrm{3}}\Leftrightarrow\:{xyz}+\frac{\mathrm{1}}{{xyz}}=\frac{\mathrm{6}}{\mathrm{3}}=\mathrm{2} \\ $$$$\Leftrightarrow\:{x}^{\mathrm{2}} {y}^{\mathrm{2}} {z}^{\mathrm{2}} +\mathrm{1}=\mathrm{2}{xyz} \\ $$$$\Leftrightarrow\:\left({xyz}\right)^{\mathrm{2}} −\mathrm{2}{xyz}+\mathrm{1}=\mathrm{0} \\ $$$${let}:\:\varphi={xyz}\:\Rightarrow\:\varphi^{\mathrm{2}} −\mathrm{2}\varphi+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\:\left(\varphi−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0}\:\Rightarrow\:\varphi=\mathrm{1} \\ $$$$\:\:\:\:\:\therefore\:\varphi\:=\:{xyz}\:=\:\mathrm{1} \\ $$