Menu Close

Question-167011




Question Number 167011 by mnjuly1970 last updated on 04/Mar/22
Answered by TheSupreme last updated on 04/Mar/22
Talete theorem respect point A far away x from center   of circle of radius 4  let′s y=PQ  x:4=(x+4):y=(x+12):8  (x/4)=((x+12)/8)→x=12  12:4=16:y  y=((16)/3)
$${Talete}\:{theorem}\:{respect}\:{point}\:{A}\:{far}\:{away}\:{x}\:{from}\:{center}\: \\ $$$${of}\:{circle}\:{of}\:{radius}\:\mathrm{4} \\ $$$${let}'{s}\:{y}={PQ} \\ $$$${x}:\mathrm{4}=\left({x}+\mathrm{4}\right):{y}=\left({x}+\mathrm{12}\right):\mathrm{8} \\ $$$$\frac{{x}}{\mathrm{4}}=\frac{{x}+\mathrm{12}}{\mathrm{8}}\rightarrow{x}=\mathrm{12} \\ $$$$\mathrm{12}:\mathrm{4}=\mathrm{16}:{y} \\ $$$${y}=\frac{\mathrm{16}}{\mathrm{3}} \\ $$
Commented by Tawa11 last updated on 19/Mar/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by Lahsen last updated on 05/Mar/22
PQ=4+(4/3)=((16)/3)
$${PQ}=\mathrm{4}+\frac{\mathrm{4}}{\mathrm{3}}=\frac{\mathrm{16}}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *