Menu Close

Question-167082




Question Number 167082 by cortano1 last updated on 06/Mar/22
Commented by cortano1 last updated on 06/Mar/22
  ∫ (fog^(−1) )(x)dx=x^3 +c   ∫g(x) f ′(x)dx=?
(fog1)(x)dx=x3+cg(x)f(x)dx=?
Answered by greogoury55 last updated on 06/Mar/22
  ∫f(g^(−1) (x))dx = x^3 +C  ⇒ f(g^(−1) (x)) = 3x^2   ⇒f(g^(−1) (g(x)))=3(g(x))^2   ⇒ f(x)= 3(g(x))^2   ⇒f ′(x)= 6g(x).g ′(x)      ∴ ∫ g(x) f ′(x)dx = ∫ g(x).6g(x) g ′(x)dx        = ∫ 6(g(x))^2  d(g(x))        = (6/3)(g(x))^3 + C        = 2(g(x))^3 + C
f(g1(x))dx=x3+Cf(g1(x))=3x2f(g1(g(x)))=3(g(x))2f(x)=3(g(x))2f(x)=6g(x).g(x)g(x)f(x)dx=g(x).6g(x)g(x)dx=6(g(x))2d(g(x))=63(g(x))3+C=2(g(x))3+C

Leave a Reply

Your email address will not be published. Required fields are marked *