Menu Close

Question-167215




Question Number 167215 by Avijit007 last updated on 09/Mar/22
Answered by MikeH last updated on 09/Mar/22
log_b a × log_c b × log_a c =   (1/(log_a b)) × ((log_a b)/(log_a c))× log_a c = 1
$$\mathrm{log}_{{b}} {a}\:×\:\mathrm{log}_{{c}} {b}\:×\:\mathrm{log}_{{a}} {c}\:= \\ $$$$\:\frac{\mathrm{1}}{\cancel{\mathrm{log}_{{a}} {b}}}\:×\:\frac{\cancel{\mathrm{log}_{{a}} {b}}}{\mathrm{log}_{{a}} {c}}×\:\mathrm{log}_{{a}} {c}\:=\:\mathrm{1} \\ $$
Answered by MikeH last updated on 09/Mar/22
Now,  log_(√a) b × log_(√b) c × log_(√c) a =   2log_a b ×2log_b c × 2log_c a =  8 (log_a b × log_b c×log_c a) =  8(1) = 8
$$\mathrm{Now}, \\ $$$$\mathrm{log}_{\sqrt{\mathrm{a}}} \mathrm{b}\:×\:\mathrm{log}_{\sqrt{\mathrm{b}}} \mathrm{c}\:×\:\mathrm{log}_{\sqrt{\mathrm{c}}} \mathrm{a}\:=\: \\ $$$$\mathrm{2log}_{\mathrm{a}} \mathrm{b}\:×\mathrm{2log}_{\mathrm{b}} \mathrm{c}\:×\:\mathrm{2log}_{\mathrm{c}} \mathrm{a}\:= \\ $$$$\mathrm{8}\:\left(\mathrm{log}_{\mathrm{a}} \mathrm{b}\:×\:\mathrm{log}_{\mathrm{b}} \mathrm{c}×\mathrm{log}_{\mathrm{c}} \mathrm{a}\right)\:= \\ $$$$\mathrm{8}\left(\mathrm{1}\right)\:=\:\mathrm{8} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *