Menu Close

Question-167278




Question Number 167278 by mnjuly1970 last updated on 11/Mar/22
Answered by mr W last updated on 11/Mar/22
f(x)=((√(x(x^2 +1)))/(x^2 +1+x))=(1/( (√((x^2 +1)/x))+(√(x/(x^2 +1)))))  =(1/( (√(x+(1/x)))+(1/( (√(x+(1/x)))))))  ≤(1/( (√2)+(1/( (√2)))))=((√2)/3)=f_(max)
$${f}\left({x}\right)=\frac{\sqrt{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}}{{x}^{\mathrm{2}} +\mathrm{1}+{x}}=\frac{\mathrm{1}}{\:\sqrt{\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}}+\sqrt{\frac{{x}}{{x}^{\mathrm{2}} +\mathrm{1}}}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{{x}+\frac{\mathrm{1}}{{x}}}+\frac{\mathrm{1}}{\:\sqrt{{x}+\frac{\mathrm{1}}{{x}}}}} \\ $$$$\leqslant\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}={f}_{{max}} \\ $$
Commented by mnjuly1970 last updated on 12/Mar/22
thanks alot  Sir  W
$${thanks}\:{alot}\:\:{Sir}\:\:{W} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *