Menu Close

Question-167301




Question Number 167301 by mnjuly1970 last updated on 12/Mar/22
Answered by amin96 last updated on 12/Mar/22
I=∫_0 ^(π/8) (1/( (√2)(1−cos((π/4)−x))))dx    (π/4)−x=t    t[(π/8); (π/4)]    I=(1/( (√2)))∫_(π/8) ^(π/4) (dt/((1−cos(t))))=(1/(2(√2)))∫_(π/8) ^(π/4) csc^2 ((t/2))dt=  =−(1/( (√2)))[cot((t/2))]_(π/8) ^(π/4) =−(1/( (√2)))[((sin((π/(16))−(π/8)))/(sin((π/8))sin((π/(16)))))]=  =(1/( (√2)))[(1/(sin((π/8))))]=((√2)/(2(√((1−cos((π/4))/2))))=(1/( (√(1−((√2)/2)))))=  =((√2)/( (√(2−(√2)))))=(((√2)×(√(2+(√2))))/( (√2)))=(√(2+(√2)))    by M.A
I=0π812(1cos(π4x))dxπ4x=tt[π8;π4]I=12π8π4dt(1cos(t))=122π8π4csc2(t2)dt==12[cot(t2)]π8π4=12[sin(π16π8)sin(π8)sin(π16)]==12[1sin(π8)]=221cos(π42=1122==222=2×2+22=2+2byM.A
Commented by mnjuly1970 last updated on 12/Mar/22
thanks alot sir
thanksalotsir
Answered by MJS_new last updated on 12/Mar/22
α=β=2
α=β=2
Answered by Mathspace last updated on 13/Mar/22
changement tan((x/2))=t give  I=∫_0 ^(tan((π/(16))))  ((2dt)/((1+t^2 )((√2)−((2t)/(1+t^2 ))−((1−t^2 )/(1+t^2 )))))  =2∫_0 ^(tan((π/(16))))   (dt/( (√2)(1+t^2 )−2t−1+t^2 ))  =2∫_0 ^(tan((π/(16))))  (dt/( (√2)+(1+(√2))t^2 −2t−1))  =2∫_0 ^(tan((π/(16))))  (dt/((1+(√2))t^2 −2t+(√2)−1))  roots!  Δ^′ =1−((√2)+1)((√2)−1)  =1−(2−1)=1−1=0  one root  x_0 =(1/(1+(√2)))=(√2)−1 ⇒  (1+(√2))t^2 −2t+(√2)−1=(1+(√2))(t−(√2)+1)^2   ⇒I=2∫_0 ^(tan((π/(16))))  (dt/((1+(√2))(t−(√2)+1)^2 ))  =2((√2)−1)∫_0 ^(tan((π/(16))))  (dt/((t−(√2)+1)^2 ))  =−2((√2)−1)[(1/(t−(√2)+1))]_0 ^(tan((π/(16))))   =2(1−(√2)){(1/(tan((π/(16)))−(√2)+1))−(1/(1+(√2)))}  rest to calculate tan((π/(16))) by the formulae  tan(2x)=((2tanx)/(1−tan^2 x)) ⇒  tan((π/8))=(√2)−1=((2x)/(1−x^2 ))  x=tan((π/(16)))....
changementtan(x2)=tgiveI=0tan(π16)2dt(1+t2)(22t1+t21t21+t2)=20tan(π16)dt2(1+t2)2t1+t2=20tan(π16)dt2+(1+2)t22t1=20tan(π16)dt(1+2)t22t+21roots!Δ=1(2+1)(21)=1(21)=11=0onerootx0=11+2=21(1+2)t22t+21=(1+2)(t2+1)2I=20tan(π16)dt(1+2)(t2+1)2=2(21)0tan(π16)dt(t2+1)2=2(21)[1t2+1]0tan(π16)=2(12){1tan(π16)2+111+2}resttocalculatetan(π16)bytheformulaetan(2x)=2tanx1tan2xtan(π8)=21=2x1x2x=tan(π16).

Leave a Reply

Your email address will not be published. Required fields are marked *