Question Number 167301 by mnjuly1970 last updated on 12/Mar/22

Answered by amin96 last updated on 12/Mar/22
![I=∫_0 ^(π/8) (1/( (√2)(1−cos((π/4)−x))))dx (π/4)−x=t t[(π/8); (π/4)] I=(1/( (√2)))∫_(π/8) ^(π/4) (dt/((1−cos(t))))=(1/(2(√2)))∫_(π/8) ^(π/4) csc^2 ((t/2))dt= =−(1/( (√2)))[cot((t/2))]_(π/8) ^(π/4) =−(1/( (√2)))[((sin((π/(16))−(π/8)))/(sin((π/8))sin((π/(16)))))]= =(1/( (√2)))[(1/(sin((π/8))))]=((√2)/(2(√((1−cos((π/4))/2))))=(1/( (√(1−((√2)/2)))))= =((√2)/( (√(2−(√2)))))=(((√2)×(√(2+(√2))))/( (√2)))=(√(2+(√2))) by M.A](https://www.tinkutara.com/question/Q167311.png)
Commented by mnjuly1970 last updated on 12/Mar/22

Answered by MJS_new last updated on 12/Mar/22

Answered by Mathspace last updated on 13/Mar/22
![changement tan((x/2))=t give I=∫_0 ^(tan((π/(16)))) ((2dt)/((1+t^2 )((√2)−((2t)/(1+t^2 ))−((1−t^2 )/(1+t^2 ))))) =2∫_0 ^(tan((π/(16)))) (dt/( (√2)(1+t^2 )−2t−1+t^2 )) =2∫_0 ^(tan((π/(16)))) (dt/( (√2)+(1+(√2))t^2 −2t−1)) =2∫_0 ^(tan((π/(16)))) (dt/((1+(√2))t^2 −2t+(√2)−1)) roots! Δ^′ =1−((√2)+1)((√2)−1) =1−(2−1)=1−1=0 one root x_0 =(1/(1+(√2)))=(√2)−1 ⇒ (1+(√2))t^2 −2t+(√2)−1=(1+(√2))(t−(√2)+1)^2 ⇒I=2∫_0 ^(tan((π/(16)))) (dt/((1+(√2))(t−(√2)+1)^2 )) =2((√2)−1)∫_0 ^(tan((π/(16)))) (dt/((t−(√2)+1)^2 )) =−2((√2)−1)[(1/(t−(√2)+1))]_0 ^(tan((π/(16)))) =2(1−(√2)){(1/(tan((π/(16)))−(√2)+1))−(1/(1+(√2)))} rest to calculate tan((π/(16))) by the formulae tan(2x)=((2tanx)/(1−tan^2 x)) ⇒ tan((π/8))=(√2)−1=((2x)/(1−x^2 )) x=tan((π/(16)))....](https://www.tinkutara.com/question/Q167316.png)