Question-167593 Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 167593 by cortano1 last updated on 20/Mar/22 Answered by qaz last updated on 20/Mar/22 A=limx→017−2(x+2)2⋅3(x+2)3+33−9x2=limx→09−2x2−8x⋅3x3+18x2+36x+273−9x2=9limx→01−89x−29x2⋅1+3627x+1827x2+327x33−1x2=9limx→0ln(1−89x−29x2⋅1+3627x+1827x2+327x33)x2=9limx→012ln(1−89x−29x2)+13ln(1+3627x+1827x2+327x3)x2=9limx→012x[−89−49x2(1−89x−29x2)+3627+3627x+927x23(1+3627x+2827x2+327x3)]=9limx→012x⋅(−4−2x9−8x−2x2+12+12x+3x227+36x+28x2+3x3)=9limx→0(−4−2x)(27+36x+28x2+3x3)+(12+12x+3x2)(9−8x−2x2)2x(9−8x−2x2)(27+36x+28x2+3x3)=9limx→0(−4⋅36−2⋅27+12⋅9−12⋅8)x+o(x)2⋅9⋅27x+o(x)=−319 Answered by cortano1 last updated on 20/Mar/22 A=limx→2(17−2x2)(3x3+3)23−81[17−2x23x3+33+9](x−2)2A=118limx→2−4x(3x3+3)23+(17−2x2)2.(9x2)33x3+332(x−2)A=136limx→2(17−2x2)6x23x3+33−4x(3x3+3)23(x−2)A=136limx→2(17−2x2)6x2−4x(3x3+3)(x−2)3x3+33A=1108limx→2102x2−24x4−12x(x−2)A=1108limx→2204x−96x3−121A=408−768−12108=−319 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-167594Next Next post: x-5x-4-x-3-5x-1-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.