Question Number 167633 by cherokeesay last updated on 21/Mar/22
Commented by som(math1967) last updated on 22/Mar/22
Commented by som(math1967) last updated on 22/Mar/22
$${BL}\:{tanjent}\:{OL}\:\:{radius}\:\therefore{BL}\bot{OL} \\ $$$$\therefore\angle{BLO}=\mathrm{90}\:\therefore\angle{BOL}=\mathrm{90}−\mathrm{60}=\mathrm{30} \\ $$$$\left[\because\:\bigtriangleup{ABC}\:{equilateral}\:\Rightarrow\angle{LBO}=\mathrm{60}\right. \\ $$$${let}\:{OL}={r} \\ $$$$\therefore{LM}={rsin}\mathrm{30}=\frac{{r}}{\mathrm{2}} \\ $$$$\:{MO}={rcos}\mathrm{30}\:=\frac{\sqrt{\mathrm{3}}{r}}{\mathrm{2}} \\ $$$${length}\:{of}\:{rectangle}=\mathrm{2}×{MO}=\sqrt{\mathrm{3}}{r} \\ $$$${area}\:{of}\:{rectangle}=\frac{\sqrt{\mathrm{3}}{r}^{\mathrm{2}} }{\mathrm{2}}\:{squnit} \\ $$$${area}\:{of}\:{half}\:{disc}=\frac{\mathrm{1}}{\mathrm{2}}×\pi×{r}^{\mathrm{2}} \\ $$$$\therefore\:\:\frac{\boldsymbol{{rectagle}}\:\boldsymbol{{area}}}{\boldsymbol{{half}}\:\boldsymbol{{disc}}\:\boldsymbol{{area}}} \\ $$$$=\frac{\frac{\sqrt{\mathrm{3}}\boldsymbol{{r}}^{\mathrm{2}} }{\mathrm{2}}}{\frac{\boldsymbol{\pi{r}}^{\mathrm{2}} }{\mathrm{2}}}=\frac{\sqrt{\mathrm{3}}}{\boldsymbol{\pi}} \\ $$
Commented by som(math1967) last updated on 21/Mar/22
$$\:\frac{{rectangle}\:{area}}{{half}\:{disc}\:{area}}=\frac{\sqrt{\mathrm{3}}}{\pi}\:\:\:? \\ $$
Commented by cherokeesay last updated on 21/Mar/22
$${yes}\:{Sir}\:! \\ $$$${thanks}. \\ $$
Commented by Lakers last updated on 21/Mar/22
$${your}\:{working}\:{please} \\ $$
Commented by Tawa11 last updated on 22/Mar/22
$$\mathrm{Nice}\:\mathrm{sir} \\ $$
Answered by cherokeesay last updated on 22/Mar/22
$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{{R}}{{CH}}={cos}\mathrm{30}°=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\Leftrightarrow\:{R}=\frac{{CH}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}}{{R}}={cos}\mathrm{30}°=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\Leftrightarrow\:{a}\:=\:\frac{\mathrm{3}{CH}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{b}}{{R}}={sin}\mathrm{30}°=\frac{\mathrm{1}}{\mathrm{2}}\:\Leftrightarrow\:{b}\:=\:\frac{{CH}\sqrt{\mathrm{3}}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathscr{A}_{{rec}.} =\mathrm{2}{ab}=\frac{\mathrm{6}{CH}^{\mathrm{2}} \sqrt{\mathrm{3}}}{\mathrm{16}} \\ $$$$\:\:\frac{\mathscr{A}_{{rec}.} }{\mathscr{A}_{{h}.{d}} }=\frac{\frac{\mathrm{6}{CH}^{\mathrm{2}} \sqrt{\mathrm{3}}}{\mathrm{16}}}{\frac{\pi\left(\frac{{CH}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{2}}}=\frac{\mathrm{6}{CH}^{\mathrm{2}} \sqrt{\mathrm{3}}}{\mathrm{16}}×\frac{\mathrm{8}}{\mathrm{3}\pi{CH}^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\sqrt{\mathrm{3}}}{\pi} \\ $$