Menu Close

Question-167633




Question Number 167633 by cherokeesay last updated on 21/Mar/22
Commented by som(math1967) last updated on 22/Mar/22
Commented by som(math1967) last updated on 22/Mar/22
BL tanjent OL  radius ∴BL⊥OL  ∴∠BLO=90 ∴∠BOL=90−60=30  [∵ △ABC equilateral ⇒∠LBO=60  let OL=r  ∴LM=rsin30=(r/2)   MO=rcos30 =(((√3)r)/2)  length of rectangle=2×MO=(√3)r  area of rectangle=(((√3)r^2 )/2) squnit  area of half disc=(1/2)×π×r^2   ∴  ((rectagle area)/(half disc area))  =((((√3)r^2 )/2)/((𝛑r^2 )/2))=((√3)/𝛑)
BLtanjentOLradiusBLOLBLO=90BOL=9060=30[ABCequilateralLBO=60letOL=rLM=rsin30=r2MO=rcos30=3r2lengthofrectangle=2×MO=3rareaofrectangle=3r22squnitareaofhalfdisc=12×π×r2rectagleareahalfdiscarea=3r22πr22=3π
Commented by som(math1967) last updated on 21/Mar/22
 ((rectangle area)/(half disc area))=((√3)/π)   ?
rectangleareahalfdiscarea=3π?
Commented by cherokeesay last updated on 21/Mar/22
yes Sir !  thanks.
yesSir!thanks.
Commented by Lakers last updated on 21/Mar/22
your working please
yourworkingplease
Commented by Tawa11 last updated on 22/Mar/22
Nice sir
Nicesir
Answered by cherokeesay last updated on 22/Mar/22
            (R/(CH))=cos30°=((√3)/2) ⇔ R=((CH(√3))/2)                 (a/R)=cos30°=((√3)/2) ⇔ a = ((3CH)/4)               (b/R)=sin30°=(1/2) ⇔ b = ((CH(√3))/4)                        A_(rec.) =2ab=((6CH^2 (√3))/(16))    (A_(rec.) /A_(h.d) )=(((6CH^2 (√3))/(16))/((π(((CH(√3))/2))^2 )/2))=((6CH^2 (√3))/(16))×(8/(3πCH^2 ))=                                          ((√3)/π)
RCH=cos30°=32R=CH32aR=cos30°=32a=3CH4bR=sin30°=12b=CH34Arec.=2ab=6CH2316Arec.Ah.d=6CH2316π(CH32)22=6CH2316×83πCH2=3π

Leave a Reply

Your email address will not be published. Required fields are marked *