Menu Close

Question-167775




Question Number 167775 by peter frank last updated on 24/Mar/22
Commented by infinityaction last updated on 24/Mar/22
put x^(4 )  =t
$${put}\:{x}^{\mathrm{4}\:} \:={t} \\ $$
Answered by peter frank last updated on 25/Mar/22
u=x^4   du=4x^3 dx  dx=(du/(4x^3 ))  ∫(x^3 /(1+u^2 )).(du/(4x^3 ))  (1/4)∫(du/(1+u^2 ))
$$\mathrm{u}=\mathrm{x}^{\mathrm{4}} \\ $$$$\mathrm{du}=\mathrm{4x}^{\mathrm{3}} \mathrm{dx} \\ $$$$\mathrm{dx}=\frac{\mathrm{du}}{\mathrm{4x}^{\mathrm{3}} } \\ $$$$\int\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }.\frac{\mathrm{du}}{\mathrm{4x}^{\mathrm{3}} } \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\int\frac{\mathrm{du}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} } \\ $$$$ \\ $$
Commented by mr W last updated on 25/Mar/22
(1/4)∫(du/(1+u^2 ))=((tan^(−1) u)/4)+C
$$\frac{\mathrm{1}}{\mathrm{4}}\int\frac{\mathrm{du}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }=\frac{\mathrm{tan}^{−\mathrm{1}} {u}}{\mathrm{4}}+{C} \\ $$
Commented by peter frank last updated on 25/Mar/22
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *