Menu Close

Question-167821




Question Number 167821 by mathlove last updated on 26/Mar/22
Commented by dangduomg last updated on 26/Mar/22
⇒ E = (4^(1/5) )^((5^(1/4) )^E )   = 4^(1/5×(5^(1/4) )^E )   = 4^(1/5×5^(E/4) )   = 4^5^(E/4−1)
$$\Rightarrow\:{E}\:=\:\left(\mathrm{4}^{\mathrm{1}/\mathrm{5}} \right)^{\left(\mathrm{5}^{\mathrm{1}/\mathrm{4}} \right)^{{E}} } \\ $$$$=\:\mathrm{4}^{\mathrm{1}/\mathrm{5}×\left(\mathrm{5}^{\mathrm{1}/\mathrm{4}} \right)^{{E}} } \\ $$$$=\:\mathrm{4}^{\mathrm{1}/\mathrm{5}×\mathrm{5}^{{E}/\mathrm{4}} } \\ $$$$=\:\mathrm{4}^{\mathrm{5}^{{E}/\mathrm{4}−\mathrm{1}} } \\ $$
Commented by aleks041103 last updated on 27/Mar/22
E=4:  4^5^(4/4−1)  =4^5^0  =4^1 =4=E  ⇒E=4 is a soln.  We should note that it is not the only  solution  log_4 E=5^(E/4−1)   x=5log_4 E  ⇒x=5.5^((1/4)4^(x/5) −1) =5^4^(x/5−1)  =x  ⇒log_5 x=4^(x/5−1)   y=4log_5 x=4log_5 (5log_4 E)  ⇒y=4.4^(5^(y/4) /5−1) =4^5^(y/4−1)    E=4+4log_5 (log_4 E)  let f(E)=E−4−4log_5 (log_4 E)  from E=4^5^(E/4−1)   we see that E>1  f(1)→+∞>0  f(16)=12−4log_5 (2)  log_5 (2)<1⇒f(16)>12−4=8>0  f(16)>0  BUT  f(2)=−2−4log_5 (log_4 2)=  =−2−4log_5 (1/2)=  =4log_5 (2)−2=  =log_5 (2^4 )−log_5 (5^2 )=  =log_5 (((16)/(25)))=log_5 (smth<1)<0  ⇒f(0)>0 (1)  f(2)<0 (2)  f(16)>0 (3)  From (1) and (2) we see that there is  at least 1 soln. between 0 and 2  From (2) and (3) we see that there is  at least 1 soln. between 2 and 16( we know  that one of those is 4)  By using Desmos we find there are  only 2 solns.: E=4 and E≈1,753
$${E}=\mathrm{4}: \\ $$$$\mathrm{4}^{\mathrm{5}^{\mathrm{4}/\mathrm{4}−\mathrm{1}} } =\mathrm{4}^{\mathrm{5}^{\mathrm{0}} } =\mathrm{4}^{\mathrm{1}} =\mathrm{4}={E} \\ $$$$\Rightarrow{E}=\mathrm{4}\:{is}\:{a}\:{soln}. \\ $$$${We}\:{should}\:{note}\:{that}\:{it}\:{is}\:{not}\:{the}\:{only} \\ $$$${solution} \\ $$$${log}_{\mathrm{4}} {E}=\mathrm{5}^{{E}/\mathrm{4}−\mathrm{1}} \\ $$$${x}=\mathrm{5}{log}_{\mathrm{4}} {E} \\ $$$$\Rightarrow{x}=\mathrm{5}.\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{4}}\mathrm{4}^{{x}/\mathrm{5}} −\mathrm{1}} =\mathrm{5}^{\mathrm{4}^{{x}/\mathrm{5}−\mathrm{1}} } ={x} \\ $$$$\Rightarrow{log}_{\mathrm{5}} {x}=\mathrm{4}^{{x}/\mathrm{5}−\mathrm{1}} \\ $$$${y}=\mathrm{4}{log}_{\mathrm{5}} {x}=\mathrm{4}{log}_{\mathrm{5}} \left(\mathrm{5}{log}_{\mathrm{4}} {E}\right) \\ $$$$\Rightarrow{y}=\mathrm{4}.\mathrm{4}^{\mathrm{5}^{{y}/\mathrm{4}} /\mathrm{5}−\mathrm{1}} =\mathrm{4}^{\mathrm{5}^{{y}/\mathrm{4}−\mathrm{1}} } \\ $$$${E}=\mathrm{4}+\mathrm{4}{log}_{\mathrm{5}} \left({log}_{\mathrm{4}} {E}\right) \\ $$$${let}\:{f}\left({E}\right)={E}−\mathrm{4}−\mathrm{4}{log}_{\mathrm{5}} \left({log}_{\mathrm{4}} {E}\right) \\ $$$${from}\:{E}=\mathrm{4}^{\mathrm{5}^{{E}/\mathrm{4}−\mathrm{1}} } \:{we}\:{see}\:{that}\:{E}>\mathrm{1} \\ $$$${f}\left(\mathrm{1}\right)\rightarrow+\infty>\mathrm{0} \\ $$$${f}\left(\mathrm{16}\right)=\mathrm{12}−\mathrm{4}{log}_{\mathrm{5}} \left(\mathrm{2}\right) \\ $$$${log}_{\mathrm{5}} \left(\mathrm{2}\right)<\mathrm{1}\Rightarrow{f}\left(\mathrm{16}\right)>\mathrm{12}−\mathrm{4}=\mathrm{8}>\mathrm{0} \\ $$$${f}\left(\mathrm{16}\right)>\mathrm{0} \\ $$$${BUT} \\ $$$${f}\left(\mathrm{2}\right)=−\mathrm{2}−\mathrm{4}{log}_{\mathrm{5}} \left({log}_{\mathrm{4}} \mathrm{2}\right)= \\ $$$$=−\mathrm{2}−\mathrm{4}{log}_{\mathrm{5}} \left(\mathrm{1}/\mathrm{2}\right)= \\ $$$$=\mathrm{4}{log}_{\mathrm{5}} \left(\mathrm{2}\right)−\mathrm{2}= \\ $$$$={log}_{\mathrm{5}} \left(\mathrm{2}^{\mathrm{4}} \right)−{log}_{\mathrm{5}} \left(\mathrm{5}^{\mathrm{2}} \right)= \\ $$$$={log}_{\mathrm{5}} \left(\frac{\mathrm{16}}{\mathrm{25}}\right)={log}_{\mathrm{5}} \left({smth}<\mathrm{1}\right)<\mathrm{0} \\ $$$$\Rightarrow{f}\left(\mathrm{0}\right)>\mathrm{0}\:\left(\mathrm{1}\right) \\ $$$${f}\left(\mathrm{2}\right)<\mathrm{0}\:\left(\mathrm{2}\right) \\ $$$${f}\left(\mathrm{16}\right)>\mathrm{0}\:\left(\mathrm{3}\right) \\ $$$${From}\:\left(\mathrm{1}\right)\:{and}\:\left(\mathrm{2}\right)\:{we}\:{see}\:{that}\:{there}\:{is} \\ $$$${at}\:{least}\:\mathrm{1}\:{soln}.\:{between}\:\mathrm{0}\:{and}\:\mathrm{2} \\ $$$${From}\:\left(\mathrm{2}\right)\:{and}\:\left(\mathrm{3}\right)\:{we}\:{see}\:{that}\:{there}\:{is} \\ $$$${at}\:{least}\:\mathrm{1}\:{soln}.\:{between}\:\mathrm{2}\:{and}\:\mathrm{16}\left(\:{we}\:{know}\right. \\ $$$$\left.{that}\:{one}\:{of}\:{those}\:{is}\:\mathrm{4}\right) \\ $$$${By}\:{using}\:{Desmos}\:{we}\:{find}\:{there}\:{are} \\ $$$${only}\:\mathrm{2}\:{solns}.:\:{E}=\mathrm{4}\:{and}\:{E}\approx\mathrm{1},\mathrm{753} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *