Menu Close

Question-168094




Question Number 168094 by cortano1 last updated on 03/Apr/22
Answered by mr W last updated on 03/Apr/22
Commented by mr W last updated on 03/Apr/22
AD^2 =(4y)^2 +y^2 +2×4y×y×(1/2)  ⇒AD=(√(21))y  x^2 +y^2 −2xy×(1/2)=1^2   ⇒x^2 +y^2 −xy=1  cos α=((4^2 +(4x+y)^2 −AD^2 )/(2×4(4x+y)))=((1^2 +(x+4y)^2 −AD^2 )/(2×1×(x+4y)))  ((4+4x^2 +2xy−5y^2 )/(4x+y))=((1+x^2 +8xy−5y^2 )/(x+4y))  ((8+6xy−9y^2 )/(4x+y))=((2+9xy−6y^2 )/(x+4y))  ⇒x^2 =1  ⇒x=1  ⇒y=1  cos α=((4^2 +5^2 −21×1)/(2×4×5))=(1/2)  ⇒sin α=((√3)/2)  AD=2R sin α  ⇒R=(((√(21))×1)/(2×((√3)/2)))=(√7)
$${AD}^{\mathrm{2}} =\left(\mathrm{4}{y}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}×\mathrm{4}{y}×{y}×\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{AD}=\sqrt{\mathrm{21}}{y} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{xy}×\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{1}^{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −{xy}=\mathrm{1} \\ $$$$\mathrm{cos}\:\alpha=\frac{\mathrm{4}^{\mathrm{2}} +\left(\mathrm{4}{x}+{y}\right)^{\mathrm{2}} −{AD}^{\mathrm{2}} }{\mathrm{2}×\mathrm{4}\left(\mathrm{4}{x}+{y}\right)}=\frac{\mathrm{1}^{\mathrm{2}} +\left({x}+\mathrm{4}{y}\right)^{\mathrm{2}} −{AD}^{\mathrm{2}} }{\mathrm{2}×\mathrm{1}×\left({x}+\mathrm{4}{y}\right)} \\ $$$$\frac{\mathrm{4}+\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2}{xy}−\mathrm{5}{y}^{\mathrm{2}} }{\mathrm{4}{x}+{y}}=\frac{\mathrm{1}+{x}^{\mathrm{2}} +\mathrm{8}{xy}−\mathrm{5}{y}^{\mathrm{2}} }{{x}+\mathrm{4}{y}} \\ $$$$\frac{\mathrm{8}+\mathrm{6}{xy}−\mathrm{9}{y}^{\mathrm{2}} }{\mathrm{4}{x}+{y}}=\frac{\mathrm{2}+\mathrm{9}{xy}−\mathrm{6}{y}^{\mathrm{2}} }{{x}+\mathrm{4}{y}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow{x}=\mathrm{1} \\ $$$$\Rightarrow{y}=\mathrm{1} \\ $$$$\mathrm{cos}\:\alpha=\frac{\mathrm{4}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} −\mathrm{21}×\mathrm{1}}{\mathrm{2}×\mathrm{4}×\mathrm{5}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{sin}\:\alpha=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${AD}=\mathrm{2}{R}\:\mathrm{sin}\:\alpha \\ $$$$\Rightarrow{R}=\frac{\sqrt{\mathrm{21}}×\mathrm{1}}{\mathrm{2}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}=\sqrt{\mathrm{7}} \\ $$
Commented by Tawa11 last updated on 03/Apr/22
Great sir.
$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *