Menu Close

Question-168161




Question Number 168161 by daus last updated on 05/Apr/22
Commented by daus last updated on 05/Apr/22
help show me the way. thanks
$${help}\:{show}\:{me}\:{the}\:{way}.\:{thanks} \\ $$
Answered by alephzero last updated on 05/Apr/22
x^2 −2x cos θ+1 = 0  ⇒ x = ((2 cos θ±(√(4 cos^2  θ−4)))/2) =  = ((2 cos θ±(√(4(cos^2  θ−1))))/2) =  = cos θ±(√(cos^2  θ−1)) =  = cos θ±i ∣sin θ∣
$${x}^{\mathrm{2}} −\mathrm{2}{x}\:\mathrm{cos}\:\theta+\mathrm{1}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:{x}\:=\:\frac{\mathrm{2}\:\mathrm{cos}\:\theta\pm\sqrt{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{4}}}{\mathrm{2}}\:= \\ $$$$=\:\frac{\mathrm{2}\:\mathrm{cos}\:\theta\pm\sqrt{\mathrm{4}\left(\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{1}\right)}}{\mathrm{2}}\:= \\ $$$$=\:\mathrm{cos}\:\theta\pm\sqrt{\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{1}}\:= \\ $$$$=\:\mathrm{cos}\:\theta\pm{i}\:\mid\mathrm{sin}\:\theta\mid \\ $$
Commented by peter frank last updated on 05/Apr/22
good
$$\mathrm{good} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *