Menu Close

Question-168210




Question Number 168210 by mathlove last updated on 06/Apr/22
Answered by mr W last updated on 06/Apr/22
y=x^3 +ex  x^3 +ex−y=0  x=(((√((e^3 /(27))+(y^2 /4)))+(y/2)))^(1/3) −(((√((e^3 /(27))+(y^2 /4)))−(y/2)))^(1/3)   f^(−1) (x)=(((√((e^3 /(27))+(x^2 /4)))+(x/2)))^(1/3) −(((√((e^3 /(27))+(x^2 /4)))−(x/2)))^(1/3)
$${y}={x}^{\mathrm{3}} +{ex} \\ $$$${x}^{\mathrm{3}} +{ex}−{y}=\mathrm{0} \\ $$$${x}=\sqrt[{\mathrm{3}}]{\sqrt{\frac{{e}^{\mathrm{3}} }{\mathrm{27}}+\frac{{y}^{\mathrm{2}} }{\mathrm{4}}}+\frac{{y}}{\mathrm{2}}}−\sqrt[{\mathrm{3}}]{\sqrt{\frac{{e}^{\mathrm{3}} }{\mathrm{27}}+\frac{{y}^{\mathrm{2}} }{\mathrm{4}}}−\frac{{y}}{\mathrm{2}}} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=\sqrt[{\mathrm{3}}]{\sqrt{\frac{{e}^{\mathrm{3}} }{\mathrm{27}}+\frac{{x}^{\mathrm{2}} }{\mathrm{4}}}+\frac{{x}}{\mathrm{2}}}−\sqrt[{\mathrm{3}}]{\sqrt{\frac{{e}^{\mathrm{3}} }{\mathrm{27}}+\frac{{x}^{\mathrm{2}} }{\mathrm{4}}}−\frac{{x}}{\mathrm{2}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *