Question Number 168348 by mnjuly1970 last updated on 08/Apr/22
Answered by mathman1234 last updated on 09/Apr/22
$$\mathrm{plz}\:\mathrm{help} \\ $$$$\mathrm{if}\:\mathrm{0}<\mathrm{a}<\mathrm{b}\:\mathrm{and}\:\mathrm{x}>\mathrm{0}\:\mathrm{proove}\:\mathrm{that} \\ $$$$\frac{\mathrm{2}}{\pi}\left(\mathrm{1}−\frac{\mathrm{a}}{\mathrm{b}}\right)\leqslant\mathrm{sup}\mid\frac{\mathrm{sin}\left(\mathrm{ax}\right)}{\mathrm{ax}}\:−\:\frac{\mathrm{sin}\left(\mathrm{ax}\right)}{\mathrm{ax}}\mid\leqslant\mathrm{4}\left(\mathrm{1}−\frac{\mathrm{a}}{\mathrm{b}}\right) \\ $$
Commented by mr W last updated on 09/Apr/22
$${please}\:{don}'{t}\:{put}\:{your}\:{new}\:{question}\:{in} \\ $$$${existing}\:{threads}\:{of}\:{other}\:{people}'{s} \\ $$$${questions}!\:{please}\:{open}\:{a}\:{new}\:{post} \\ $$$${for}\:{your}\:{own}\:{question}! \\ $$
Answered by mindispower last updated on 11/Apr/22
$$\Psi\left(\mathrm{1}+{x}\right)=−\gamma−\underset{{n}\geqslant} {\sum}\zeta\left({n}+\mathrm{1}\right)\left(−{x}\right)^{{n}} \\ $$$$\Psi\left(\mathrm{1}−{x}\right)=−\gamma−\underset{{n}\geqslant\mathrm{1}} {\sum}\zeta\left({n}+\mathrm{1}\right){x}^{{n}} \\ $$$$\Psi\left(\mathrm{1}−{x}\right)−\Psi\left(\mathrm{1}+{x}\right)=\underset{{n}\geqslant\mathrm{1}} {\sum}\zeta\left({n}+\mathrm{1}\right)\left(−\left({x}\right)^{{n}} +\left(−{x}\right)^{{n}} \right) \\ $$$$=−\mathrm{2}\underset{{n}\geqslant\mathrm{0}} {\sum}\zeta\left(\mathrm{2}{n}+\mathrm{2}\right){x}^{\mathrm{2}{n}+\mathrm{1}} =\Psi\left(\mathrm{1}−{x}\right)−\Psi\left(\mathrm{1}+{x}\right) \\ $$$$\Rightarrow\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\zeta\left(\mathrm{2}{n}+\mathrm{2}\right)}{\mathrm{2}{n}+\mathrm{3}}{x}^{\mathrm{2}{n}+\mathrm{3}} =−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{{x}} {t}\left(\Psi\left(\mathrm{1}−{t}\right)−\Psi\left(\mathrm{1}+{t}\right)\right){dt} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{{x}} {t}\left(\pi{cot}\left(\pi{t}\right)−\frac{\mathrm{1}}{{t}}\right){dt} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{{x}} \pi{tcot}\left(\pi{t}\right)+\frac{{x}}{\mathrm{2}} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{2}}\Leftrightarrow\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ucot}\left({u}\right)\frac{{du}}{\pi} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({u}\right)\right){du}\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}\pi}.\frac{\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{4}}{ln}\left(\mathrm{2}\right)=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\zeta\left(\mathrm{2}{n}\right)}{\mathrm{2}{n}+\mathrm{1}}.\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} } \\ $$$$ \\ $$$$\Rightarrow\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\zeta\left(\mathrm{2}{n}\right)}{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} \left(\mathrm{2}{n}+\mathrm{1}\right)}=\mathrm{1}−{ln}\left(\mathrm{2}\right)={ln}\left(\frac{{e}}{\mathrm{2}}\right) \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 13/Apr/22
$$\:\:\:\:{grateful}\:{sir}\:\:{power}… \\ $$
Commented by mindispower last updated on 13/Apr/22
$${withe}\:{Pleasur}\:{sir}\:{Have}\:{nice}\:{Day} \\ $$$${Ramadan}\:{Mobarak} \\ $$