Menu Close

Question-168383




Question Number 168383 by cortano1 last updated on 09/Apr/22
Commented by mr W last updated on 09/Apr/22
x=2^(192)
$${x}=\mathrm{2}^{\mathrm{192}} \\ $$
Answered by greogoury55 last updated on 09/Apr/22
  { ((t^(256) = log _t (x)⇒x=t^t^(256)  )),((t^(128)  = log _t (log _t (2))+log _t (24)−128)) :}   ⇒t^(128) = log _t (24 log _t (2))−128  ⇒[ log _t (24.log _t (2))−128 ]^2 = log _t (x)
$$\:\begin{cases}{{t}^{\mathrm{256}} =\:\mathrm{log}\:_{{t}} \left({x}\right)\Rightarrow{x}={t}^{{t}^{\mathrm{256}} } }\\{{t}^{\mathrm{128}} \:=\:\mathrm{log}\:_{{t}} \left(\mathrm{log}\:_{{t}} \left(\mathrm{2}\right)\right)+\mathrm{log}\:_{{t}} \left(\mathrm{24}\right)−\mathrm{128}}\end{cases} \\ $$$$\:\Rightarrow{t}^{\mathrm{128}} =\:\mathrm{log}\:_{{t}} \left(\mathrm{24}\:\mathrm{log}\:_{{t}} \left(\mathrm{2}\right)\right)−\mathrm{128} \\ $$$$\Rightarrow\left[\:\mathrm{log}\:_{{t}} \left(\mathrm{24}.\mathrm{log}\:_{{t}} \left(\mathrm{2}\right)\right)−\mathrm{128}\:\right]^{\mathrm{2}} =\:\mathrm{log}\:_{{t}} \left({x}\right) \\ $$
Answered by mr W last updated on 10/Apr/22
log_t  (24 log_t  2)−128=t^(128)   log_t  (log_t  2^(24) )=128+t^(128)   log_t  2^(24) =t^(128+t^(128) ) =t^(128) t^t^(128)    2^(24) =t^(t^(128) t^t^(128)  ) =(t^t^(128)  )^t^t^(128)     let a=t^t^(128)    ⇒a^a =2^(24) =2^(3×8) =8^8  ⇒a=8  or  e^(ln a) ln a=24ln 2  ⇒ln a=W(24ln 2)  ⇒a=e^(W(24ln 2)) =((24ln 2)/(W(24ln 2)))=8  t^t^(128)  =a  (t^(128) )^t^(128)  =a^(128) =8^(128)   let b=t^(128)   b^b =8^(2×64) =64^(64)  ⇒b=64  or  ⇒b=t^(128) =((384ln 2)/(W(384ln 2)))=64  ⇒t=64^(1/(128)) =2^(3/(64))     log_t  x=t^(256)   ⇒x=t^t^(256)  =t^(t^(128) t^(128) ) =(t^t^(128)  )^t^(128)  =a^b =8^(64) =2^(192)
$$\mathrm{log}_{{t}} \:\left(\mathrm{24}\:\mathrm{log}_{{t}} \:\mathrm{2}\right)−\mathrm{128}={t}^{\mathrm{128}} \\ $$$$\mathrm{log}_{{t}} \:\left(\mathrm{log}_{{t}} \:\mathrm{2}^{\mathrm{24}} \right)=\mathrm{128}+{t}^{\mathrm{128}} \\ $$$$\mathrm{log}_{{t}} \:\mathrm{2}^{\mathrm{24}} ={t}^{\mathrm{128}+{t}^{\mathrm{128}} } ={t}^{\mathrm{128}} {t}^{{t}^{\mathrm{128}} } \\ $$$$\mathrm{2}^{\mathrm{24}} ={t}^{{t}^{\mathrm{128}} {t}^{{t}^{\mathrm{128}} } } =\left({t}^{{t}^{\mathrm{128}} } \right)^{{t}^{{t}^{\mathrm{128}} } } \\ $$$${let}\:{a}={t}^{{t}^{\mathrm{128}} } \\ $$$$\Rightarrow{a}^{{a}} =\mathrm{2}^{\mathrm{24}} =\mathrm{2}^{\mathrm{3}×\mathrm{8}} =\mathrm{8}^{\mathrm{8}} \:\Rightarrow{a}=\mathrm{8} \\ $$$${or} \\ $$$${e}^{\mathrm{ln}\:{a}} \mathrm{ln}\:{a}=\mathrm{24ln}\:\mathrm{2} \\ $$$$\Rightarrow\mathrm{ln}\:{a}={W}\left(\mathrm{24ln}\:\mathrm{2}\right) \\ $$$$\Rightarrow{a}={e}^{{W}\left(\mathrm{24ln}\:\mathrm{2}\right)} =\frac{\mathrm{24ln}\:\mathrm{2}}{{W}\left(\mathrm{24ln}\:\mathrm{2}\right)}=\mathrm{8} \\ $$$${t}^{{t}^{\mathrm{128}} } ={a} \\ $$$$\left({t}^{\mathrm{128}} \right)^{{t}^{\mathrm{128}} } ={a}^{\mathrm{128}} =\mathrm{8}^{\mathrm{128}} \\ $$$${let}\:{b}={t}^{\mathrm{128}} \\ $$$${b}^{{b}} =\mathrm{8}^{\mathrm{2}×\mathrm{64}} =\mathrm{64}^{\mathrm{64}} \:\Rightarrow{b}=\mathrm{64} \\ $$$${or} \\ $$$$\Rightarrow{b}={t}^{\mathrm{128}} =\frac{\mathrm{384ln}\:\mathrm{2}}{{W}\left(\mathrm{384ln}\:\mathrm{2}\right)}=\mathrm{64} \\ $$$$\Rightarrow{t}=\mathrm{64}^{\frac{\mathrm{1}}{\mathrm{128}}} =\mathrm{2}^{\frac{\mathrm{3}}{\mathrm{64}}} \\ $$$$ \\ $$$$\mathrm{log}_{{t}} \:{x}={t}^{\mathrm{256}} \\ $$$$\Rightarrow{x}={t}^{{t}^{\mathrm{256}} } ={t}^{{t}^{\mathrm{128}} {t}^{\mathrm{128}} } =\left({t}^{{t}^{\mathrm{128}} } \right)^{{t}^{\mathrm{128}} } ={a}^{{b}} =\mathrm{8}^{\mathrm{64}} =\mathrm{2}^{\mathrm{192}} \\ $$
Commented by Tawa11 last updated on 09/Apr/22
Great sir.
$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *