Menu Close

Question-168477




Question Number 168477 by infinityaction last updated on 11/Apr/22
Commented by mr W last updated on 11/Apr/22
π/3>1  ⇒cos^(−1) (π/3) is not defined!  question is wrong!
$$\pi/\mathrm{3}>\mathrm{1} \\ $$$$\Rightarrow\mathrm{cos}^{−\mathrm{1}} \left(\pi/\mathrm{3}\right)\:{is}\:{not}\:{defined}! \\ $$$${question}\:{is}\:{wrong}! \\ $$
Commented by infinityaction last updated on 11/Apr/22
no  use of limit after integration
$${no} \\ $$$${use}\:{of}\:{limit}\:{after}\:{integration} \\ $$
Commented by mr W last updated on 11/Apr/22
so you think ∫_0 ^2 (√(1−x^2 )) dx exists?
$${so}\:{you}\:{think}\:\int_{\mathrm{0}} ^{\mathrm{2}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}\:{exists}? \\ $$
Commented by infinityaction last updated on 11/Apr/22
no  ggot it sir
$${no} \\ $$$${ggot}\:{it}\:{sir} \\ $$
Commented by safojontoshtemirov last updated on 12/Apr/22
∫_0 ^(π/3) sinx∙cosxdx=∫_0 ^(π/3) sinxd(sinx)=∫_0 ^((√3)/2) tdt  (t^2 /2)∣_0 ^((√3)/2) =(3/8).
$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{3}}} {\int}}{sinx}\centerdot{cosxdx}=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{3}}} {\int}}{sinxd}\left({sinx}\right)=\underset{\mathrm{0}} {\overset{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} {\int}}{tdt} \\ $$$$\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\underset{\mathrm{0}} {\overset{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} {\mid}}=\frac{\mathrm{3}}{\mathrm{8}}. \\ $$
Commented by mr W last updated on 12/Apr/22
cos^(−1) x=arccos x≠(1/(cos x))
$$\mathrm{cos}^{−\mathrm{1}} {x}=\mathrm{arccos}\:{x}\neq\frac{\mathrm{1}}{\mathrm{cos}\:{x}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *