Menu Close

Question-168579




Question Number 168579 by alf123 last updated on 13/Apr/22
Commented by MJS_new last updated on 14/Apr/22
y=((−x^3 +15x^2 −49x−54)/(x+1))  −∞<y<+∞  ⇒ no absolute min/max exist  for local min/max solve y′=0
$${y}=\frac{−{x}^{\mathrm{3}} +\mathrm{15}{x}^{\mathrm{2}} −\mathrm{49}{x}−\mathrm{54}}{{x}+\mathrm{1}} \\ $$$$−\infty<{y}<+\infty \\ $$$$\Rightarrow\:\mathrm{no}\:\mathrm{absolute}\:\mathrm{min}/\mathrm{max}\:\mathrm{exist} \\ $$$$\mathrm{for}\:\mathrm{local}\:\mathrm{min}/\mathrm{max}\:\mathrm{solve}\:{y}'=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *