Question Number 168606 by Shrinava last updated on 14/Apr/22
Commented by mr W last updated on 14/Apr/22
$$\left[{ABC}\right]={area}\:{of}\:\Delta{ABC}? \\ $$$${is}\:{I}_{{a}} \:{opposite}\:{to}\:{A}? \\ $$
Commented by Shrinava last updated on 14/Apr/22
$$\mathrm{Sorry}-\mathrm{sorry}\:\boldsymbol{\mathrm{sir}},\:\mathrm{M},\mathrm{L},\mathrm{L}\:\mathrm{no}\:\:\mathrm{M},\mathrm{L},\mathrm{K} \\ $$
Commented by mr W last updated on 14/Apr/22
$${you}\:{mean}\:{M},{L},{K},\:{not}\:{M},{L},{L}.\:{this}\:{is} \\ $$$${clear}. \\ $$$${please}\:{answer}\:{my}\:{questions}\:{above}! \\ $$
Commented by Shrinava last updated on 14/Apr/22
$$\boldsymbol{\mathrm{Yes}}\:\boldsymbol{\mathrm{sir}} \\ $$
Commented by Shrinava last updated on 14/Apr/22
$$\boldsymbol{\mathrm{Sir}},\:\mathrm{I}\:\mathrm{would}\:\mathrm{like}\:\mathrm{to}\:\mathrm{see}\:\mathrm{your}\:\mathrm{perfect}\:\mathrm{solution} \\ $$
Commented by mr W last updated on 22/Apr/22
$${i}\:{have}\:{proved}\:{both}\:{statements}. \\ $$$${in}\:{AB}+{BC}+{CA}\leqslant\mathrm{2}\left({ML}+{LK}+{KM}\right) \\ $$$$“=''\:{is}\:{never}\:{valid}.\:{In}\:{fact}\:{we}\:{have} \\ $$$${AB}+{BC}+{CA}<\frac{\mathrm{4}}{\mathrm{3}}\left({ML}+{LK}+{KM}\right) \\ $$
Answered by mr W last updated on 15/Apr/22
Commented by Shrinava last updated on 15/Apr/22
$$\boldsymbol{\mathrm{Sir}},\:\mathrm{the}\:\mathrm{start}\:\mathrm{is}\:\mathrm{perfect}\:\left(\mathrm{as}\:\mathrm{usual}\right) \\ $$
Commented by Shrinava last updated on 15/Apr/22
$$\boldsymbol{\mathrm{Sir}},\:\mathrm{if}\:\mathrm{possible},\:\mathrm{you}\:\mathrm{would}\:\mathrm{note}\:\mathrm{the} \\ $$$$\mathrm{continuation}… \\ $$
Commented by mr W last updated on 17/Apr/22
$${other}\:{things}\:{in}\:{life}\:{come}\:{first}… \\ $$
Commented by Shrinava last updated on 17/Apr/22
$$\mathrm{yes}\:\mathrm{of}\:\mathrm{course}\:\boldsymbol{\mathrm{sir}} \\ $$
Commented by mr W last updated on 22/Apr/22
$${proof}\:{see}\:{Q}\mathrm{168926} \\ $$
Commented by Shrinava last updated on 23/Apr/22
$$\mathrm{Yes}\:\mathrm{dear}\:\mathrm{sir} \\ $$