Menu Close

Question-168609




Question Number 168609 by infinityaction last updated on 14/Apr/22
Commented by infinityaction last updated on 14/Apr/22
coordinate of point  (a,b)
coordinateofpoint(a,b)
Answered by mr W last updated on 14/Apr/22
r=(√((12−6)^2 +(−6−4)^2 ))=2(√(34))  sin α=((4−(−6))/(2(√(34))))=(5/( (√(34))))  cos α=((6−12)/(2(√(34))))=−(3/( (√(34))))  a=12+2(√(34)) cos (α+(π/3))    =12+2(√(34))(−(3/( (√(34))))×(1/2)−(5/( (√(34))))×((√3)/2))    =9−5(√3)  b=−6+2(√(34)) sin (α+(π/3))    =−6+2(√(34)) ((5/( (√(34))))×(1/2)−(3/( (√(34))))×((√3)/2))    =−1−3(√3)
r=(126)2+(64)2=234sinα=4(6)234=534cosα=612234=334a=12+234cos(α+π3)=12+234(334×12534×32)=953b=6+234sin(α+π3)=6+234(534×12334×32)=133
Commented by infinityaction last updated on 14/Apr/22
where is a α in this diagram
whereisaαinthisdiagram
Commented by mr W last updated on 14/Apr/22
Commented by infinityaction last updated on 14/Apr/22
thank you sir
thankyousir
Answered by cortano1 last updated on 14/Apr/22
let ℓ is line passes througt point   B(((6+12)/2),((4−6)/2))=B(9,−1)   with gradient=−(1/((((4+6)/(6−12))))) =(3/5)   then ℓ ≡ 3x−5y=32  equation of circle    (x−12)^2 +(y+6)^2 =136   then the line ℓ cut the circle  ⇒(((32+5y)/3)−12)^2 +(y+6)^2 =136  ⇒(((5y−4)/3))^2 +(y+6)^2 =136    ⇒ { ((y_1 = −3(√3)−1 = b)),((x_1 = −5(√3)+9 = a)) :}   ∴ P(−5(√3)+9, −3(√3)−1)
letislinepassesthrougtpointB(6+122,462)=B(9,1)withgradient=1(4+6612)=35then3x5y=32equationofcircle(x12)2+(y+6)2=136thenthelinecutthecircle(32+5y312)2+(y+6)2=136(5y43)2+(y+6)2=136{y1=331=bx1=53+9=aP(53+9,331)

Leave a Reply

Your email address will not be published. Required fields are marked *