Question Number 168707 by safojontoshtemirov last updated on 16/Apr/22
Commented by safojontoshtemirov last updated on 16/Apr/22
$${help}\:{me} \\ $$
Answered by mindispower last updated on 19/Apr/22
$${sin}\left(\mathrm{2}{x}\right)=\frac{\mathrm{2}{tg}\left({x}\right)}{\mathrm{1}+{tg}^{\mathrm{2}} \left({x}\right)} \\ $$$$\Leftrightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{xln}\left(\mathrm{1}+{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${A}−{B} \\ $$$$\left.{A}\left.=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}+{i}}+\frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}−{i}}{dx}=\mathrm{2}{Re}\left\{\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}+{i}}{d}\frac{\mathrm{3}}{}\frac{\mathrm{3}}{}\right){x}\right\}\right) \\ $$$$=\mathrm{2}{Re}\left\{{ln}\left(\mathrm{2}\right){ln}\left(\mathrm{1}+{i}\right)−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}+{i}\right)}{\mathrm{1}+{x}}{dx}\right\} \\ $$$$={ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\mathrm{2}{Re}\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{ln}\left({u}−\mathrm{1}+{i}\right)}{{u}}{du} \\ $$$${u}=\left(\mathrm{1}−{i}\right){t} \\ $$$${A}={ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\mathrm{2}{Re}\int_{\frac{\mathrm{1}+{i}}{\mathrm{2}}} ^{\left(\mathrm{1}+{i}\right)} \frac{{ln}\left(\left({i}−\mathrm{1}\right)\left(\mathrm{1}−\boldsymbol{{t}}\right)\right.}{\boldsymbol{{t}}}\boldsymbol{{dt}} \\ $$$$\boldsymbol{{ln}}\left(\boldsymbol{{i}}−\mathrm{1}\right)=\boldsymbol{{ln}}\left(\sqrt{\mathrm{2}}\right)+\frac{\mathrm{3}\boldsymbol{{i}\pi}}{\mathrm{4}} \\ $$$${A}={ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\mathrm{2}{Re}\left({ln}\left(\sqrt{\mathrm{2}}\right)+\frac{\mathrm{3}{i}\pi}{\mathrm{4}}\right){ln}\left(\mathrm{2}\right) \\ $$$$+\mathrm{2}{Re}\left(−\int_{\frac{\mathrm{1}+{i}}{\mathrm{2}}} ^{\mathrm{1}+{i}} \frac{{ln}\left(\mathrm{1}−{t}\right)}{{t}}{dt}\right) \\ $$$$=\mathrm{2}{Re}\left({Li}_{\mathrm{2}} \left(\mathrm{1}+{i}\right)−\boldsymbol{{L}}{i}_{\mathrm{2}} \left(\frac{\mathrm{1}+{i}}{\mathrm{2}}\right)\right) \\ $$$$={Li}_{\mathrm{2}} \left(\mathrm{1}+{i}\right)−{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}+{i}}{\mathrm{2}}\right)−{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}−{i}}{\mathrm{2}}\right)+{Li}_{\mathrm{2}} \left(\mathrm{1}−{i}\right) \\ $$$${Li}_{\mathrm{2}} \left({z}\right)+{li}_{\mathrm{2}} \left(\mathrm{1}−{z}\right)=\zeta\left(\mathrm{2}\right)−{ln}\left({z}\right){ln}\left(\mathrm{1}−{z}\right) \\ $$$${z}=\frac{\mathrm{1}+{i}}{\mathrm{2}}\Rightarrow{li}_{\mathrm{2}} \left(\frac{\mathrm{1}+{i}}{\mathrm{2}}\right)+\mathrm{li}_{\mathrm{2}} \left(\frac{\mathrm{1}−\mathrm{i}}{\mathrm{2}}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−{ln}\left(\frac{{e}^{{i}\frac{\pi}{\mathrm{4}}} }{\:\sqrt{\mathrm{2}}}\right){ln}\left(\frac{{e}^{−\frac{{i}\pi}{\mathrm{4}}} }{\:\sqrt{\mathrm{2}}}\right) \\ $$$$=\zeta\left(\mathrm{2}\right)−\left({ln}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)+\frac{{i}\pi}{\mathrm{4}}\right)\left({ln}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)−{i}\frac{\pi}{\mathrm{4}}\right) \\ $$$$=\zeta\left(\mathrm{2}\right)−\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{4}}−\frac{\pi^{\mathrm{2}} }{\mathrm{16}} \\ $$$${li}_{\mathrm{2}} \left(\mathrm{1}−{z}\right)+{Li}_{\mathrm{2}} \left(\mathrm{1}−\frac{\mathrm{1}}{{z}}\right)=−\frac{{ln}^{\mathrm{2}} \left({z}\right)}{\mathrm{2}} \\ $$$${li}_{\mathrm{2}} \left(\mathrm{1}−{i}\right)+{Li}_{\mathrm{2}} \left(\mathrm{1}+{i}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+\frac{\pi^{\mathrm{2}} }{\mathrm{16}}+\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{4}}=\frac{\pi^{\mathrm{2}} }{\mathrm{48}}+\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{4}} \\ $$$${B}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right){dx}=\frac{\mathrm{1}}{\mathrm{4}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right) \\ $$$${we}\:{Get} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {tg}\left({x}\right){ln}\left(\mathrm{1}+{sin}\left(\mathrm{2}{x}\right)\right){dx}={A}−{B}=\frac{\pi^{\mathrm{2}} }{\mathrm{48}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$