Menu Close

Question-168852




Question Number 168852 by bagjagugum123 last updated on 19/Apr/22
Commented by CAIMAN last updated on 19/Apr/22
3π/8
Commented by safojontoshtemirov last updated on 20/Apr/22
solution.Safojon.Toshtemirov.  ∫_0 ^∞ ((sin^n x)/x^n )dx=  y=x^n   x=y^(1/n)    dx=(y^((1/n)−1) /n)dy  (1/n)∫_0 ^∞ ((y^((1/n)−1) ∙siny)/y)dy=(1/n)∫_0 ^∞ y^((1/n)−2) ∙sinydy=  (1/((1−(1/n))!))∫_0 ^∞ ζ_t ^n {(((1−(1/n))!)/s^(1+(1−(1/n))) )}(y)ζ_t (sint)(y)dy  (1/(n(1−(1/n))!))∫_0 ^∞ (y^(1−(1/n)) /(1+y^2 ))dy=(1/(2n(1−(1/n))!))∫_0 ^∞ (y^((1−(1/(2n)))−1) /(y+1))dy  =((Γ(1−(1/(2n)))Γ((1/(2n))))/(2n(1−(1/n))!))=((π∙(1/(sin(π/(2n)))))/(2n(1−(1/n))!))  n=3  ∫_0 ^∞ ((sin^3 x)/x^3 )dx=((π∙2)/(6∙((2/3))!))=(π/(3∙((2/3))!))
solution.Safojon.Toshtemirov.0sinnxxndx=y=xnx=y1ndx=y1n1ndy1n0y1n1sinyydy=1n0y1n2sinydy=1(11n)!0ζtn{(11n)!s1+(11n)}(y)ζt(sint)(y)dy1n(11n)!0y11n1+y2dy=12n(11n)!0y(112n)1y+1dy=Γ(112n)Γ(12n)2n(11n)!=π1sinπ2n2n(11n)!n=30sin3xx3dx=π26(23)!=π3(23)!
Commented by botir last updated on 20/Apr/22
veru solution laplas
verusolutionlaplas

Leave a Reply

Your email address will not be published. Required fields are marked *