Question Number 168857 by Sotoberry last updated on 19/Apr/22
Answered by MJS_new last updated on 20/Apr/22
$$\int\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\sqrt{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}+\mathrm{1}}}{dx}=\int\frac{\sqrt{{x}−\mathrm{1}}}{{x}^{\mathrm{3}} }{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{{x}−\mathrm{1}}\:\rightarrow\:{dx}=\mathrm{2}\sqrt{{x}−\mathrm{1}}{dt}\right] \\ $$$$=\mathrm{2}\int\frac{{t}^{\mathrm{2}} }{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }{dt}=\frac{{t}\left({t}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{4}\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{arctan}\:{t}\:= \\ $$$$=\frac{\left({x}−\mathrm{2}\right)\sqrt{{x}−\mathrm{1}}}{\mathrm{4}{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{arctan}\:\sqrt{{x}−\mathrm{1}}\:+{C} \\ $$
Answered by MJS_new last updated on 20/Apr/22
$$\int\sqrt{\frac{{x}−\mathrm{1}}{{x}^{\mathrm{5}} }}{dx}= \\ $$$$\left.\:\:\:\:\:{t}=\sqrt{\frac{{x}−\mathrm{1}}{{x}}}\:\rightarrow\:{dx}=\mathrm{2}{x}^{\mathrm{2}} \sqrt{\frac{{x}−\mathrm{1}}{{x}}}{dt}\right] \\ $$$$=\mathrm{2}\int{t}^{\mathrm{2}} {dt}=\frac{\mathrm{2}{t}^{\mathrm{3}} }{\mathrm{3}}=\frac{\mathrm{2}}{\mathrm{3}}\sqrt{\frac{\left({x}−\mathrm{1}\right)^{\mathrm{3}} }{{x}^{\mathrm{3}} }}+{C} \\ $$
Answered by cortano1 last updated on 20/Apr/22
$$\:\int\:\frac{\sqrt{{x}−\mathrm{1}}}{\:\sqrt{{x}^{\mathrm{5}} }}\:{dx}=\:\int\:\frac{\sqrt{\mathrm{1}−{x}^{−\mathrm{1}} }\:{dx}}{{x}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\int\:{x}^{−\mathrm{2}} \:\sqrt{\mathrm{1}−{x}^{−\mathrm{1}} }\:{dx} \\ $$$$\:\left[\:{let}\:{u}^{\mathrm{2}} =\mathrm{1}−{x}^{−\mathrm{1}} \:\Rightarrow\mathrm{2}{u}\:{du}\:=\:{x}^{−\mathrm{2}} \:{dx}\:\right] \\ $$$$\:{I}=\:\int\:{u}\:\left(\mathrm{2}{u}\:{du}\right)=\:\frac{\mathrm{2}}{\mathrm{3}}{u}^{\mathrm{3}} +{c} \\ $$$$\:\:\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:\left(\frac{{x}−\mathrm{1}}{{x}}\right)\sqrt{\frac{{x}−\mathrm{1}}{{x}}}\:+\:{c} \\ $$$$ \\ $$