Menu Close

Question-168857




Question Number 168857 by Sotoberry last updated on 19/Apr/22
Answered by MJS_new last updated on 20/Apr/22
∫(1/x^3 )(√((x^2 −1)/(x+1)))dx=∫((√(x−1))/x^3 )dx=       [t=(√(x−1)) → dx=2(√(x−1))dt]  =2∫(t^2 /((t^2 +1)^3 ))dt=((t(t^2 −1))/(4(t^2 +1)^2 ))+(1/4)arctan t =  =(((x−2)(√(x−1)))/(4x^2 ))+(1/4)arctan (√(x−1)) +C
1x3x21x+1dx=x1x3dx=[t=x1dx=2x1dt]=2t2(t2+1)3dt=t(t21)4(t2+1)2+14arctant==(x2)x14x2+14arctanx1+C
Answered by MJS_new last updated on 20/Apr/22
∫(√((x−1)/x^5 ))dx=       t=(√((x−1)/x)) → dx=2x^2 (√((x−1)/x))dt]  =2∫t^2 dt=((2t^3 )/3)=(2/3)(√(((x−1)^3 )/x^3 ))+C
x1x5dx=t=x1xdx=2x2x1xdt]=2t2dt=2t33=23(x1)3x3+C
Answered by cortano1 last updated on 20/Apr/22
 ∫ ((√(x−1))/( (√x^5 ))) dx= ∫ (((√(1−x^(−1) )) dx)/x^2 )                           = ∫ x^(−2)  (√(1−x^(−1) )) dx   [ let u^2 =1−x^(−1)  ⇒2u du = x^(−2)  dx ]   I= ∫ u (2u du)= (2/3)u^3 +c     = (2/3) (((x−1)/x))(√((x−1)/x)) + c
x1x5dx=1x1dxx2=x21x1dx[letu2=1x12udu=x2dx]I=u(2udu)=23u3+c=23(x1x)x1x+c

Leave a Reply

Your email address will not be published. Required fields are marked *