Question Number 169092 by Shrinava last updated on 24/Apr/22
Answered by mr W last updated on 24/Apr/22
Commented by mr W last updated on 24/Apr/22
$${BE}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\left(\pi−\frac{\pi}{\mathrm{2}}−\theta\right) \\ $$$${BE}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{sin}\:\theta=\left(\sqrt{\mathrm{2}}{c}\right)^{\mathrm{2}} \:\:\:\:…\left({i}\right) \\ $$$${replace}\:\theta\:{with}\:−\theta\:{we}\:{get} \\ $$$${BD}^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{sin}\:\theta=\left(\sqrt{\mathrm{2}}{d}\right)^{\mathrm{2}} \:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)+\left({ii}\right): \\ $$$$\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)=\mathrm{2}{c}^{\mathrm{2}} +\mathrm{2}{d}^{\mathrm{2}} \\ $$$$\Rightarrow{a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} +{d}^{\mathrm{2}} \:\:\:{proved}\checkmark \\ $$$$ \\ $$$${it}\:{can}\:{also}\:{be}\:{proved}\:{that}\:{the}\:{blue} \\ $$$${square}\:{and}\:{the}\:{green}\:{square}\:{always} \\ $$$${touch}\:{each}\:{other}\:{as}\:{shown}. \\ $$$$\mathrm{sin}\:\left(\alpha+\frac{\pi}{\mathrm{4}}\right)=\frac{{a}\:\mathrm{cos}\:\theta}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{sin}\:\theta}} \\ $$$$\mathrm{sin}\:\left(\beta+\frac{\pi}{\mathrm{4}}\right)=\frac{{a}\:\mathrm{cos}\:\theta}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{sin}\:\theta}} \\ $$$$\left(\sqrt{\mathrm{2}}{a}\right)^{\mathrm{2}} ={c}^{\mathrm{2}} +{d}^{\mathrm{2}} +\mathrm{2}{cd}\:\mathrm{sin}\:\left(\alpha+\beta\right)\:\:? \\ $$$$\mathrm{2}{a}^{\mathrm{2}} ={c}^{\mathrm{2}} +{d}^{\mathrm{2}} −\mathrm{2}{cd}\:\mathrm{cos}\:\left(\alpha+\frac{\pi}{\mathrm{4}}+\beta+\frac{\pi}{\mathrm{4}}\right) \\ $$$${b}^{\mathrm{2}} −{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta=\sqrt{\left({a}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}{a}^{\mathrm{2}} {b}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$${b}^{\mathrm{4}} +{a}^{\mathrm{4}} \mathrm{sin}^{\mathrm{4}} \:\theta=\left({a}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta \\ $$$$\mathrm{0}=\mathrm{0}\:\checkmark \\ $$
Commented by Tawa11 last updated on 24/Apr/22
$$\mathrm{Great}\:\mathrm{sir}. \\ $$
Commented by Shrinava last updated on 24/Apr/22
$$\mathrm{Perfect}\:\mathrm{dear}\:\mathrm{sir}\:\mathrm{thank}\:\mathrm{you} \\ $$