Menu Close

Question-169211




Question Number 169211 by 0731619 last updated on 26/Apr/22
Commented by infinityaction last updated on 26/Apr/22
sin (α+β) = ((2mn)/(m^2 +n^2 ))
sin(α+β)=2mnm2+n2
Commented by 0731619 last updated on 26/Apr/22
solution plz
solutionplz
Commented by infinityaction last updated on 26/Apr/22
   sin^2 𝛂 + sin^2  𝛃 + 2sin (𝛂)sin (𝛃) =n^2  ..(1)     cos^2 𝛂 +cos^2 𝛃 + 2cos (𝛂)cos (𝛃) = m^2  ....(2)      eq^n .(1) + eq^n . (2)     2 + 2(sin 𝛂 sin 𝛃 + cos 𝛂 cos 𝛃) = n^2 +m^2  ...(3)     2{1 + cos (𝛂−𝛃)} = m^2  + n^(2 )   .....(4)     eq^n .(1) × eq^n .(2)    (sin α +sin β)(cos α+cos β) = mn  cos αsin α + cos βsin β +cosα sinβ  + cosβ sinα = mn    sin 2α +sin 2β + 2sin (𝛂+𝛃) = 2mn     2sin (𝛂+𝛃)∙cos (𝛂−𝛃) + 2sin (𝛂+𝛃) = 2mn    2sin (α+β){cos (𝛂−𝛃) + 1} = 2mn   ....(5)       ((eq^n .(5))/(eq^n .(4)))     ((2sin (𝛂+𝛃){cos(𝛂−𝛃) + 1} )/(2{1+cos (𝛂−𝛃)})) = ((2mn)/(m^2 +n^2 ))     sin (𝛂+𝛃)   =  ((2mn)/(m^2 +n^2 ))
sin2α+sin2β+2sin(α)sin(β)=n2..(1)cos2α+cos2β+2cos(α)cos(β)=m2.(2)eqn.(1)+eqn.(2)2+2(sinαsinβ+cosαcosβ)=n2+m2(3)2{1+cos(αβ)}=m2+n2..(4)eqn.(1)×eqn.(2)(sinα+sinβ)(cosα+cosβ)=mncosαsinα+cosβsinβ+cosαsinβ+cosβsinα=mnsin2α+sin2β+2sin(α+β)=2mn2sin(α+β)cos(αβ)+2sin(α+β)=2mn2sin(α+β){cos(αβ)+1}=2mn.(5)eqn.(5)eqn.(4)2sin(α+β){cos(αβ)+1}2{1+cos(αβ)}=2mnm2+n2sin(α+β)=2mnm2+n2
Commented by som(math1967) last updated on 26/Apr/22
sinα+sinβ=m  ⇒2sin(((α+β)/2))cos(((α−β)/2))=m ....i)  cosα+cosβ=m  2cos(((α+β)/2))cos(((α−β)/2))=n ....ii)  i) ×ii  2sin(((α+β)/2))cos(((α+β)/2))2cos^2 (((α−β)/2))=mn  ⇒sin(α+β)=((mn)/(2cos^2 (((α−β)/2))))   (i)^2 +(ii)^2   4cos^2 (((α−β)/2))[sin^2 (((α+β)/2))+cos^2 (((α+β)/2))]                             =m^2 +n^2   ∴2cos^2 (((α−β)/2))=((m^2 +n^2 )/2)  ∴sin(α+β)=((mn)/(2cos^2 (((α−β)/2))))                 =((mn)/((m^2 +n^2 )/2))  ∴sin(𝛂+𝛃)=((2mn)/(m^2 +n^2 ))
sinα+sinβ=m2sin(α+β2)cos(αβ2)=m.i)cosα+cosβ=m2cos(α+β2)cos(αβ2)=n.ii)i)×ii2sin(α+β2)cos(α+β2)2cos2(αβ2)=mnsin(α+β)=mn2cos2(αβ2)(i)2+(ii)24cos2(αβ2)[sin2(α+β2)+cos2(α+β2)]=m2+n22cos2(αβ2)=m2+n22sin(α+β)=mn2cos2(αβ2)=mnm2+n22sin(α+β)=2mnm2+n2
Commented by infinityaction last updated on 26/Apr/22
Answered by PhysicalMath last updated on 26/Apr/22
2sin(((α+β)/2))cos(((α−β)/2))=n      ... eq1  2cos(((α+β)/2))cos(((α−β)/2))=m    ... eq2  =>((eq1)/(eq2)) = tan(((α+β)/2))=(n/m)  sin(α+β)=((2tan(((α+β)/2)))/(1+tan^2 (((α+β)/2))))  =((2((n/m)))/(1+((n/m))^2 ))=((2mn)/(m^2 +n^2 ))
2sin(α+β2)cos(αβ2)=neq12cos(α+β2)cos(αβ2)=meq2=>eq1eq2=tan(α+β2)=nmsin(α+β)=2tan(α+β2)1+tan2(α+β2)=2(nm)1+(nm)2=2mnm2+n2
Commented by peter frank last updated on 29/Apr/22
very short
veryshort

Leave a Reply

Your email address will not be published. Required fields are marked *