Menu Close

Question-169260




Question Number 169260 by mathlove last updated on 27/Apr/22
Answered by nurtani last updated on 27/Apr/22
(1/x)+(1/y)=(1/3)...(i)  (1/y)+(1/z)=(1/6)...(ii)  (1/x)+(1/z)=(1/9)...(iii)  (i)+(ii)+(iii):  (2/x)+(2/y)+(2/z)=((11)/(18))  ⇔ 2 ((1/x)+(1/y)+(1/z))=((11)/(18))  ⇔ (1/x)+(1/y)+(1/z)=((11)/(36))  ∴  (3/x)+(3/y)+(3/z)= 3((1/x)+(1/y)+(1/z))=3(((11)/(36)))= ((11)/(12))
$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\frac{\mathrm{1}}{\mathrm{3}}…\left({i}\right) \\ $$$$\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=\frac{\mathrm{1}}{\mathrm{6}}…\left({ii}\right) \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{z}}=\frac{\mathrm{1}}{\mathrm{9}}…\left({iii}\right) \\ $$$$\left({i}\right)+\left({ii}\right)+\left({iii}\right): \\ $$$$\frac{\mathrm{2}}{{x}}+\frac{\mathrm{2}}{{y}}+\frac{\mathrm{2}}{{z}}=\frac{\mathrm{11}}{\mathrm{18}} \\ $$$$\Leftrightarrow\:\mathrm{2}\:\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}\right)=\frac{\mathrm{11}}{\mathrm{18}} \\ $$$$\Leftrightarrow\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\therefore\:\:\frac{\mathrm{3}}{{x}}+\frac{\mathrm{3}}{{y}}+\frac{\mathrm{3}}{{z}}=\:\mathrm{3}\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}\right)=\mathrm{3}\left(\frac{\mathrm{11}}{\mathrm{36}}\right)=\:\frac{\mathrm{11}}{\mathrm{12}} \\ $$
Commented by mathlove last updated on 27/Apr/22
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *