Menu Close

Question-169294




Question Number 169294 by cortano1 last updated on 28/Apr/22
Commented by qaz last updated on 28/Apr/22
Same as : lim_(x→0) ((sin tan x−tan sin x)/x^7 )=−(1/(14))
$$\mathrm{Same}\:\mathrm{as}\::\:\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{tan}\:\mathrm{x}−\mathrm{tan}\:\mathrm{sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{7}} }=−\frac{\mathrm{1}}{\mathrm{14}} \\ $$
Commented by cortano1 last updated on 28/Apr/22
your answer wrong
$${your}\:{answer}\:{wrong} \\ $$
Answered by bobhans last updated on 28/Apr/22
 lim_(x→0)  ((sinh (sin x)−sin (sinh x))/x^7 )    = lim_(x→0)  (((x−(1/(15))x^5 +(1/(90))x^7 +O(x^9 ))−(x−(1/(15))x^5 −(1/(90))x^7 +O(x^9 )))/x^7 )   = lim_(x→0)  (((1/(45))x^7 +O(x^9 ))/x^7 ) = (1/(45))
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sinh}\:\left(\mathrm{sin}\:{x}\right)−\mathrm{sin}\:\left(\mathrm{sinh}\:{x}\right)}{{x}^{\mathrm{7}} }\: \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left({x}−\frac{\mathrm{1}}{\mathrm{15}}{x}^{\mathrm{5}} +\frac{\mathrm{1}}{\mathrm{90}}{x}^{\mathrm{7}} +{O}\left({x}^{\mathrm{9}} \right)\right)−\left({x}−\frac{\mathrm{1}}{\mathrm{15}}{x}^{\mathrm{5}} −\frac{\mathrm{1}}{\mathrm{90}}{x}^{\mathrm{7}} +{O}\left({x}^{\mathrm{9}} \right)\right)}{{x}^{\mathrm{7}} } \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{\mathrm{45}}{x}^{\mathrm{7}} +{O}\left({x}^{\mathrm{9}} \right)}{{x}^{\mathrm{7}} }\:=\:\frac{\mathrm{1}}{\mathrm{45}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *