Menu Close

Question-169391




Question Number 169391 by mathlove last updated on 29/Apr/22
Commented by infinityaction last updated on 29/Apr/22
0
$$\mathrm{0} \\ $$
Commented by mathlove last updated on 29/Apr/22
any solution?
$${any}\:{solution}? \\ $$
Answered by mr W last updated on 30/Apr/22
(x+(√(1+x^2 )))(y+(√(1+y^2 )))=1  (√(1+x^2 ))+x=(√(1+y^2 ))−y  x+y=(√(1+y^2 ))−(√(1+x^2 ))  xy=1−(√(1+y^2 ))(√(1+x^2 ))  1−xy=(√(1+y^2 ))(√(1+x^2 ))  y^2 +x^2 +2xy+(xy)^2 =0  (x+y)^2 +(xy)^2 =0  ⇒xy=0 ⇒x=y=0  ⇒x+y=0  ⇒(x+y)^2 =0
$$\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)\left({y}+\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }\right)=\mathrm{1} \\ $$$$\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }+{x}=\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }−{y} \\ $$$${x}+{y}=\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${xy}=\mathrm{1}−\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }\sqrt{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\mathrm{1}−{xy}=\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }\sqrt{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$${y}^{\mathrm{2}} +{x}^{\mathrm{2}} +\mathrm{2}{xy}+\left({xy}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\left({x}+{y}\right)^{\mathrm{2}} +\left({xy}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{xy}=\mathrm{0}\:\Rightarrow{x}={y}=\mathrm{0} \\ $$$$\Rightarrow{x}+{y}=\mathrm{0} \\ $$$$\Rightarrow\left({x}+{y}\right)^{\mathrm{2}} =\mathrm{0} \\ $$
Commented by mathlove last updated on 04/May/22
thank sir
$${thank}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *