Question Number 169407 by Shrinava last updated on 29/Apr/22
Answered by Rasheed.Sindhi last updated on 01/May/22
$$\mathrm{If}\:\mathbb{N}=\left\{\mathrm{0},\mathrm{1},\mathrm{2},…\right\} \\ $$$$\mathrm{M}=\left\{\left(\mathrm{0},\mathrm{0},\mathrm{0},\mathrm{0}\right)\right\} \\ $$$$\Omega=\mathrm{0} \\ $$$$\mathrm{16}^{{x}} +\mathrm{16}^{\frac{\mathrm{1}}{{x}}} =\mathrm{8}\:{has}\:{no}\:{solution}. \\ $$
Commented by mr W last updated on 03/May/22
$$\left(\mathrm{1},\mathrm{1},\mathrm{2},\mathrm{4}\right)\:{is}\:{a}\:{valid}\:{solution},\:{which} \\ $$$${gives}\:{totally}\:\mathrm{12}\:{possible}\:{solutions}. \\ $$$$\Omega=\mathrm{12}×\mathrm{8}=\mathrm{96}. \\ $$$${is}\:{this}\:{correct}? \\ $$
Commented by Rasheed.Sindhi last updated on 03/May/22
$$\mathbb{T}\mathrm{han}\Bbbk\mathrm{s}\:\boldsymbol{\mathrm{sir}}\:\mathrm{and}\:\mathrm{sorry}\:\mathrm{for}\:\mathrm{my}\:\mathrm{wrong}\: \\ $$$$\mathrm{answer}. \\ $$
Commented by mr W last updated on 03/May/22
$${i}'{m}\:{not}\:{sure}\:{what}\:{is}\:{the}\:{right}\:{answer}. \\ $$