Menu Close

Question-169480




Question Number 169480 by TOTTI last updated on 01/May/22
Answered by MikeH last updated on 01/May/22
(a) lim_(x→1^− )  g(x) = lim_(x→1)  x = 1  (b) lim_(x→1^+ )  g(x) = lim_(x→1) (2−x^2 )=1  ∴ lim_(x→1)  g(x) = 1  (c) g(1) = 3  (d) lim_(x→2^− )  g(x) = lim_(x→2) (2−x^2 ) = −2  (e) lim_(x→2^+ )  g(x) = lim_(x→2)  (x−3) = −1  hence lim_(x→2)  g(x) does not exist.
$$\left(\mathrm{a}\right)\:\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\:\mathrm{g}\left({x}\right)\:=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:{x}\:=\:\mathrm{1} \\ $$$$\left(\mathrm{b}\right)\:\underset{{x}\rightarrow\mathrm{1}^{+} } {\mathrm{lim}}\:\mathrm{g}\left({x}\right)\:=\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\mathrm{2}−{x}^{\mathrm{2}} \right)=\mathrm{1} \\ $$$$\therefore\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\mathrm{g}\left({x}\right)\:=\:\mathrm{1} \\ $$$$\left(\mathrm{c}\right)\:\mathrm{g}\left(\mathrm{1}\right)\:=\:\mathrm{3} \\ $$$$\left(\mathrm{d}\right)\:\underset{{x}\rightarrow\mathrm{2}^{−} } {\mathrm{lim}}\:\mathrm{g}\left({x}\right)\:=\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\left(\mathrm{2}−{x}^{\mathrm{2}} \right)\:=\:−\mathrm{2} \\ $$$$\left(\mathrm{e}\right)\:\underset{{x}\rightarrow\mathrm{2}^{+} } {\mathrm{lim}}\:\mathrm{g}\left({x}\right)\:=\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\left({x}−\mathrm{3}\right)\:=\:−\mathrm{1} \\ $$$$\mathrm{hence}\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\mathrm{g}\left({x}\right)\:\mathrm{does}\:\mathrm{not}\:\mathrm{exist}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *