Menu Close

Question-169480




Question Number 169480 by TOTTI last updated on 01/May/22
Answered by MikeH last updated on 01/May/22
(a) lim_(x→1^− )  g(x) = lim_(x→1)  x = 1  (b) lim_(x→1^+ )  g(x) = lim_(x→1) (2−x^2 )=1  ∴ lim_(x→1)  g(x) = 1  (c) g(1) = 3  (d) lim_(x→2^− )  g(x) = lim_(x→2) (2−x^2 ) = −2  (e) lim_(x→2^+ )  g(x) = lim_(x→2)  (x−3) = −1  hence lim_(x→2)  g(x) does not exist.
(a)limx1g(x)=limx1x=1(b)limx1+g(x)=limx1(2x2)=1limx1g(x)=1(c)g(1)=3(d)limx2g(x)=limx2(2x2)=2(e)limx2+g(x)=limx2(x3)=1hencelimx2g(x)doesnotexist.

Leave a Reply

Your email address will not be published. Required fields are marked *