Question Number 169610 by mathlove last updated on 04/May/22
Answered by som(math1967) last updated on 04/May/22
$$\frac{\alpha^{\mathrm{2}} }{\alpha^{\mathrm{2}} +\alpha\beta+\alpha\gamma}+\frac{\beta^{\mathrm{2}} }{\beta^{\mathrm{2}} +\alpha\beta+\beta\gamma}+\frac{\gamma^{\mathrm{2}} }{\gamma^{\mathrm{2}} +\beta\gamma+\gamma\alpha}\:\bigstar \\ $$$$=\frac{\alpha^{\mathrm{2}} }{\alpha\left(\alpha+\beta+\gamma\right)}\:+\frac{\beta^{\mathrm{2}} }{\beta\left(\alpha+\beta+\gamma\right)}+\frac{\gamma^{\mathrm{2}} }{\gamma\left(\alpha+\beta+\gamma\right)} \\ $$$$=\frac{\left(\alpha+\beta+\gamma\right)}{\left(\alpha+\beta+\gamma\right)}=\mathrm{1}\:\left[\alpha+\beta+\gamma\neq\mathrm{0}\right] \\ $$$$\bigstar\alpha\beta+\beta\gamma+\gamma\alpha=\mathrm{0} \\ $$$$\therefore−\beta\gamma=\alpha\beta+\alpha\gamma \\ $$$$\:−\gamma\alpha=\alpha\beta+\beta\gamma \\ $$$$−\alpha\beta=\beta\gamma+\gamma\alpha \\ $$